
1

Control StructureControl Structure

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• Decision control structures (if, else, switch)
• Repetition control structures (while, do-while, for)

• Branching statements (break, continue, return)

3

Decision ControlDecision Control
StructuresStructures

4

Decision Control Structures

• Decision control structures
> Java statements that allows us to select and execute specific

blocks of code while skipping other sections

• Types:
> if-statement
> if-else-statement
> If-else if-statement

5

if-statement

• if-statement
> Specifies that a statement (or statements in a block of code)

will be executed if and only if a boolean condition is true

• if-statement has the form:
if(boolean_expression)

statement;

or
if(boolean_expression){

statement1;
statement2;

}

> boolean_expression is either a boolean expression or boolean
variable.

Recommended even for
 a single statement

6

Examples: if statement

// Example #1
int grade = 68;
if(grade > 60)

System.out.println("Congratulations!");

// Example #2
int grade = 68;
if(grade > 60){

System.out.println("Congratulations!");
System.out.println("You passed!");

}

7

if-else statement
• if-else statement
> Used when we want to execute a block of code if a boolean

condition is true, and a different block of code otherwise

• if-else statement has the form:

 if(boolean_expression){
statement1;
statement2;
. . .

}
else{

statement3;
statement4;
. . .

}

8

if-else-if statement

• The statement has the form:
 if(boolean_expression1){

statement1;

 }
else if(boolean_expression2){

statement2;

 }
else {

statement3;

 }

9

Example: if-else-if statement

int grade = 68;

if (grade > 90){
System.out.println("Very good!");

}
else if (grade > 60){

System.out.println("Good!");
}
else{

System.out.println("Sorry you failed");
}

10

Common Errors

1. The condition inside the if-statement does not evaluate to
a boolean value. For example,

// Compile error because number is not boolean
int number = 0;
if(number){

//some statements here
}

2. Writing elseif instead of else if

11

Common Errors

3. Using = instead of == for comparison. For example,

 //WRONG
int number = 0;
if(number = 0){

//some statements here
}

This should be written as,

 //CORRECT
int number = 0;
if(number == 0){

//some statements here
}

12

switch-statement
• switch
> Allows branching on multiple outcomes

• switch statement has the form:
switch(switch_expression){

case case_selector1:
statement1;//
statement2;//block 1
break;

case case_selector2:
statement1;//
statement2;//block 2
break;

:
default:

statement1;//
 statement2;//block n

}

13

switch-statement

• where,
> switch_expression

> Integer or character expression
> String expression – only from Java SE 7

> case_selector1, case_selector2 and so on,
> Are unique integer or character constants.

14

switch-statement

• When a switch is encountered,
> Java first evaluates the switch_expression, and jumps to the

case whose selector matches the value of the expression.
> The program executes the statements in order from that point

on until a break statement is encountered
> If none of the cases are satisfied, the default block is executed

• Unlike with the if statement, the multiple statements are
executed in the switch statement without needing the
curly braces.

• When a case in a switch statement has been matched,
all the statements associated with that case are executed

15

Flowchart

16

Example: switch statement

1 public class Grade {
2 public static void main(String[] args) {
3 int grade = 92;
4 switch ((grade/10)*10) { // Round down to nearest 10
5 case 100:
6 System.out.println("Excellent!");
7 break;
8 case 90:
9 System.out.println("Good job!");
10 break;
11 case 80:
12 System.out.println("Study harder!");
13 break;
14 default: // If there is no match, this will be chosen
15 System.out.println("Sorry, you failed.");
16 }
17 }
18 }

17

Coding Guidelines

• Deciding whether to use an if statement or a switch
statement is a judgment call
> You can decide which to use, based on readability and other

factors.

• An if statement can be used to make decisions based on
ranges of values or conditions, whereas a switch statement
can make decisions based only on a single ivalue. Also, the
value provided to each case statement must be unique.

18

Lab:Lab:

Exercise 1: “if/else” control structureExercise 1: “if/else” control structure
1034_javase_control.zip1034_javase_control.zip

19

Repetition ControlRepetition Control
StructuresStructures

20

Repetition Control Structures

• Repetition control structures
> Are Java statements that allows us to execute specific blocks

of code a number of times.

• Types:
> while-loop
> do-while loop
> for-loop

21

while-loop

• while loop
> is a statement or block of code that is repeated as long as

some condition is satisfied.

• while loop has the form:
while(boolean_expression){

statement1;
statement2;
. . .

}

> The statements inside the while loop are executed as long as
the boolean_expression evaluates to true.

22

Examples: while loop

// Example #1
int x = 0;
while (x<10) {
 System.out.println(x);
 x++;
}

// Example #2: infinite loop
while(true)

System.out.println(“hello”);

// Example #3: no loops
// statement is not even executed
while (false)

System.out.println(“hello”);

23

do-while-loop

• do-while loop
> is similar to the while-loop
> statements inside a do-while loop are executed several times

as long as the condition is satisfied
> The main difference between a while and do-while loop:

> the statements inside a do-while loop are executed at least once.

• do-while loop has the form:
do{

statement1;
statement2;
. . .

}while(boolean_expression);

24

Examples: do-while loop
// Example #1
int x = 0;
do {

System.out.println(x);
x++;

}while (x<10);

// Example #2: infinite loop
do{

System.out.println(“hello”);
} while (true);

// Example #3: one loop
// statement is executed once
do

System.out.println(“hello”);
while (false);

25

for-loop

• for loop
> allows execution of the same code a number of times.

• for loop has the form (pre-Java SE 5 format)
for(InitializationExpression;LoopCondition;StepExpres
sion){

statement1;
statement2;
. . .

}

> where,
> InitializationExpression -initializes the loop variable.
> LoopCondition - compares the loop variable to some limit value.
> StepExpression - updates the loop variable.

26

Example: for loop

• The code shown above is equivalent to the following
while loop.

int i;
for(i = 0; i < 10; i++){

System.out.println(i);
}

int i = 0;
while(i < 10){

System.out.print(i);
i++;

}

27

Lab:Lab:

Exercise 2: “for” loopExercise 2: “for” loop
Exercise 3: “while” loopExercise 3: “while” loop
1034_javase_control.zip1034_javase_control.zip

28

Branching StatementsBranching Statements

29

Branching Statements

• Branching statements allows us to redirect the flow of
program execution.

• Java offers three branching statements:
> break
> continue
> return

30

“break” statement

• Terminates the enclosing switch statement, and flow of
control transfers to the statement immediately following
the switch.

• This can also be used to terminate a for, while, or do-
while loop

31

Example: “break” statement

String names[]={"Beah","Bianca","Lance","Belle","Nico","Yza","Gem","Ethan"};

String searchName = "Yza";

boolean foundName = false;

for(int i=0; i< names.length; i++){

if(names[i].equals(searchName)){

foundName = true;

break;

}

}

if(foundName) System.out.println(searchName + " found!");

else System.out.println(searchName + " not found.");

32

“continue” statement

• Skips to the end of the innermost loop's body and
evaluates the boolean expression that controls the loop,
basically skipping the remainder of this iteration of the
loop.

33

Example: “continue”

String names[] = {"Beah", "Bianca", "Lance", "Beah"};

int count = 0;

for(int i=0; i<names.length; i++){
if(!names[i].equals("Beah")){

continue;//skip next statement

}

count++;

}

System.out.println("There are "+count+" Beahs in the list");

34

return statement

• Used to exit from current method
> Flow of control returns to the statement that follows the original

method call.

• To return a value
> Simply put the value (or an expression that calculates the

value) after the return keyword.
> For example,

return ++count;

or

return "Hello";

> The data type of the value returned by return must match the
type of the method's declared return value.

35

Code with Passion!Code with Passion!
JPassion.comJPassion.com

35

	Slide 1
	Objectives
	Slide 3
	Decision
	if
	Slide 6
	if-else
	else if
	Slide 9
	Common Errors in ifelse
	Slide 11
	switch
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	repetition
	while-loop
	Slide 22
	dowhile loop
	Slide 24
	for-loop
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

