
1

Context and Context and 
Dependency Injection (CDI)Dependency Injection (CDI)

 (JSR 299) Basics (JSR 299) Basics

1

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”



2

• What is and Why Dependency Injection?
• What is and Why CDI (JSR 299)?  What about JSR 330?
• CDI theme – Loose coupling with strong typing
• Bean definition (in the context of CDI)
• Basic dependency injection
• Qualifier
• @Named built-in qualifier
• Stateful objects (scoped objects)
• CDI for Java SE application

Topics



What is & Why What is & Why 
Dependency Dependency 
Injection (DI)?Injection (DI)?



4

• Classes specify what their dependencies are NOT how to obtain 
them
> “How to obtain” is now handled by the container

• Why Dependency injection?
> Dependency injection makes unit-testing and mocking easier
> Dependency injection allows container to do the bean-discovery 

and bean-wiring

• Dependency Injection frameworks (containers)
> Spring 
> Guice
> Seam
> EJB 3.x
> CDI (the latest, the best, and standard-based)

What is and Why Dependency Injection?



What is & Why What is & Why 
CDI (JSR 299)?CDI (JSR 299)?



6

What is CDI (JSR 299)? (Basic)

• Provides a unifying Dependency Injection and contextual life-
cycle model for Java EE
> Unified existing Dependency Injection schemes – Spring, Guice, 

Seam
> A completely new, richer dependency management model
> Type-safe dependency injection
> Designed for use with stateful objects (scoped objects)

• Makes it much easier to build applications using JSF and EJB 
together (this was the original goal of JSR 299)
> Let you use EJBs directly as JSF managed beans



7

Why CDI (JSR 299) for Java EE 6? 

• Reason #1: We need general-purpose dependency injection 
scheme
> Java EE 5 provides resource injection of only known resources to 

the container (@EJB, @PersistenceContext, @PersistenceUnit, 
@Resource )

> In other words, unlike Spring framework, the Java EE 5 does not 
provide general-purpose dependency injection scheme

• Reason #2: We need type-based injection
> Non-type-based injection (String name or XML based injection) is 

fragile 
> Type-based injection enables better tooling in general



8

Terminology

• CDI (JSR 299)
> Context & Dependency Injection for Java EE

• Weld
> JSR 299 reference implementation
> Provides extended CDI support for Servlet container (Tomcat, 

Jetty, etc) and Java SE
> CDI enhancements for extension writers
> Maven archetypes for CDI and Java EE 



9

JSR 299 vs JSR 330

• JSR 299 (CDI) is built upon JSR 330 (Dependency Injection for 
Java)
> The relationship between JSR 299 and JSR 299 is like the one 

between JPA and JDBC

• JSR 330 defines 
> Inject, Qualifier, Scope, Singleton, Named, and Provider

• JSR 299 enhances JSR 330 significantly with
> Modularization (loose-coupling), cross cutting aspects (decorators, 

interceptors), custom scopes, or type safe injection capabilities



CDI Theme:CDI Theme:
“Loose Coupling“Loose Coupling
with Strong Typing”with Strong Typing”



11

CDI Theme: Loose Coupling 

• Decouple dependency provider and dependency user
> Using well-defined types and qualifiers – dependency is defined as 

a Type and user of the dependency searches the dependency 
using Type

> Allows provider implementations to vary without affecting user

• Decouple lifecycle of collaborating components (dependencies) 
from application (dependency user)
> Automatic contextual life-cycle management by the CDI runtime

• Decouple orthogonal concerns (AOP) from business logic
> Interceptors & Decorators

• Decouple message producer from consumer
> Events



12

CDI Theme: Strong Typing 

• Type-based injection has advantages of 
> No more reliance on string-based names
> Compiler can detect type errors at compile time
> Casting mostly eliminated
> Strong tooling possible

• Semantic code errors (errors that cannot be detected by the 
compiler) can be detected at application start-up
> Tools can detect ambiguous dependencies

• Leverages Java type system
> @Annotation 
> <TypeParam>



Bean DefinitionBean Definition
(in the context of CDI)(in the context of CDI)



14

What is a Bean anyway?

• Many forms of a “bean” already exist. So which bean are we 
talking about?
> JSF bean
> EJB bean
> Spring bean
> Seam bean
> Guice bean
> CDI bean

• Java EE needs a unified bean definition
> Managed Bean 1.0 specification in Java EE 6 provides it



15

Managed Bean 1.0: What is it?
• Managed Beans are container-managed POJOs 
> Lightweight component model
> Instances are managed by the container

• Support a small set of common basic services
> Life-cycle management (@PostConstruct, @PreDestroy)
> Injection of a resource (@Resource...)
> Interceptor (@Interceptors, @AroundInvoke)



16

Managed Beans 1.0: Example
@javax.annotation.ManagedBean
public class MyPojo {

  @Resource   // Resource injection
  private Datasource ds;

  @PostConstruct  // Life-cycle
  private void init() {
    ....
  }

  @Interceptors(LoggingInterceptor.class)  
  public void myMethod() {...}
}



17

What about EJB, REST, CDI. etc Bean?

• You could see everything as a Managed Bean with extra 
services

• An EJB is a Managed Bean with 
> Transaction support
> Security
> Thread safety
> Persistence

• A REST service is a Managed Bean with
> HTTP support

• A CDI bean is a Managed Bean with 
> CDI services (explained in the next slide) 



18

• Auto-discovered – by the container
• Set of qualifiers – solves ambiguity 
• Scope – context of a bean
• Bean EL name – support non-type based invocation
• Set of interceptor bindings
• Alternative – replace bean at deployment time

We will cover these in this and other CDI presentations in 
detail.

CDI Bean Services



19

CDI Bean Example

• No annotation required
• No bean declaration in XML file required

     // This is a valid CDI bean – a CDI client that is looking for
     // Greeting type CDI bean will be injected with instance of
     // this bean. 
     public class Greeting {

    public String greet(String name) {
        return "Hello, " + name;
    }
}



20

CDI + EJB Bean Example

• Now EJB services – transaction, security, etc are added to the 
bean

// A CDI client that is looking for Greeting2 type CDI bean 
// will be injected with instance of this bean, which has
// EJB bean services built-in.
@Stateless
public class Greeting2 {
    public String greet(String name) {
        return "Hello, " + name;
    }
}



21

Automatic Bean Discovery

• How does container discover beans?
> By scanning the classpath that contains both application and 

container archives

• How can container scan only the application archives for bean 
discovery?
> By detecting the presence of “beans.xml” in application archive

• “beans.xml”
> Unlike Spring, it is NOT for declaring beans - It can be empty
> Used for some other purposes (like declaring an alternative)
> Optional in Java EE 7



Basic InjectionBasic Injection



23

How do you inject a Bean? 

• Use @Inject <Java-Type> <variable> for field injection
• <Java-Type> can be Java class or Java interface

public class MyGreeter {

    // Inject Greeting object for field injection
   @Inject Greeting greeting;

   public sayGreeting(String name){
       // You can then used the injected Greeting object
       System.out.println(greeting.greet(name));
   }
}



24

Where can you inject a bean?

• Bean can be injected at “Injection points”
> Field
> Method parameter

• Method can be
> Constructor method (useful for creating immutable object)
> Initializer method
> Setter method
> Producer (will be covered in “CDI Advanced”)
> Observer (will be covered in “CDI Advanced”)



25

Example: Constructor Injection Point

     public class MyGreeter {

   private Greeting greeting;

    // Use constructor method injection
    @Inject
    public MyGreeter(Greeting greeting) {
        this.greeting = greeting;
    }

   public sayGreeting(String name){
       System.out.println(greeting.greet(name));
   }
}



26

Lab:Lab:

Exercise 1: @Inject Simple CasesExercise 1: @Inject Simple Cases
4531_javaee6_cdi_basics.zip4531_javaee6_cdi_basics.zip



QualifierQualifier



28

• For a given bean type (class or interface), there may be multiple 
beans which implement the type (in the classpath)
> For an interface, there could be multiple implementations
> For a class, there could be multiple child types  

• A qualifier is an annotation that lets a client choose one among 
multiple candidates of a certain type
> Make type more specific
> A qualifier could have more semantically meaningful name

• Injected type is identified by
> Qualifier(s) + Java type
> e.g. @Inject @LoggedIn User user;

What is a Qualifier?

Qualifier Java type



29

• Define a qualifier (type) 
• Qualify a class
• Select a qualified class

How to build and use Qualifier? – 3 steps



30

// Define “Informal” qualifier (type)
@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Informal { }  

Define a Qualifier (Type)



31

// Bind the “@Informal” qualifier with “InformalGreeting”
// implementation class.  (Think of @Informal as an
// extended type of the Greeting implementation class.)

@Informal
public class InformalGreeting extends Greeting {
   public String greet(String name) {
      return "hi " + name;
   }
}

Qualify a Class



32

• Injected type is identified by
> Qualifier(s) + Java type

public class MyGreeter {

   //  Injected type is identified by @Informal qualifier and Greeting type.
   //  So InformalGreeting class (of previous slide) will be chosen
   //  instead of just any Greeting type class for dependency injection.
   @Inject @Informal Greeting greeting;

   public void greet() {
      System.out.println(greeting.greet("Hello") );
   }
}

Select Qualified Class



33

• Qualifier + Java type makes a composite type
> Again, think of a Qualifier as a type

• Qualifiers make type safe injection possible
> Qualifiers replace “look-up via string-based names”

Qualifier and Type Safety (Strong Typing)



34

Lab:Lab:

Exercise 2: @QualifierExercise 2: @Qualifier
4531_javaee6_cdi_basics.zip4531_javaee6_cdi_basics.zip



35

• Define a Qualifier with attributes

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD,FIELD,PARAMETER})
public @interface VariousGreetings {
    GreetingType type() default GreetingType.FORMAL;
    String name() default "formal";
}

• Qualify a class with qualifier 

@VariousGreetings(type=GreetingType.FORMAL)
public class FormalGreeting implements GreetingInterface {
    public String greet(String name){
        return "Formal Hello " + name;
    }
}

Qualifier with Attributes



36

• Select qualified class
  
 // Inject GreetingInterface object with qualifier with attribute
 @Inject 
 @VariousGreetings(type=GreetingType.INFORMAL)
 GreetingInterface greeting;

Qualifier with Attributes



37

Lab:Lab:

Exercise 3: Qualifier with AttributesExercise 3: Qualifier with Attributes
4531_javaee6_cdi_basics.zip4531_javaee6_cdi_basics.zip



@Named@Named
Built-in QualiferBuilt-in Qualifer



39

• In Java code, injected type is identified by
> Qualifier(s) + Java type 

• How do we identify a bean outside of type-safe Java code, for 
example in Unified EL expressions (in facelet or JSP), in which 
we cannot use Java type?
> We should able to identify a bean via a name (not Java type) – the 

reason why we need @Named annotation

<h:commandButton value="Say Hello"
                                action="#{myprinter.greet}"/>

• The use of @Named as an injection point qualifier is not 
recommended, except in the case of integration with legacy 
code that uses string-based names to identify beans

When do we use @Named Annotation?



40

• Give it a name using @Named annotation

public
@Named("myprinter")
class Printer {

    @Inject Greeting greeting;

    public void greet() {
        System.out.println( greeting.greet("world") );
    }
}

Why do we need @Named Annotation?



41

• If the value is not specified, the default name is the name of the 
class (starting with lower case) 

public
@Named    // Default name is “printer”  
class Printer {

    @Inject Greeting greeting;

    public void greet() {
        System.out.println( greeting.greet("world") );
    }
}

Default name



Stateful ObjectsStateful Objects
(Scoped Objects)(Scoped Objects)



43

• For Web applications, we need our beans to hold state over the 
duration of the user’s interaction with the application, for 
example, across multiple requests to the server

<!-- If you don't specify Request scope for the “printer” bean class,
      which is shown in the next slide, then the 2nd #{printer.greet} 
      will result in null because bean object gets created in 
      Dependent scope, which is default.  In Dependent scope,
      the “printer” bean of inputText object is different from
      the “printer” bean of the commandButton object.  -->
<h:form>
    <h:inputText value="#{printer.name}"/>
    <h:commandButton value="Say Hello"
                                    action="#{printer.greet}"/>
</h:form>

Why Do We need Stateful Objects?



44

• If we want our object to hold state, we need to declare the scope 
of that state

public
@RequestScoped  // Printer object is in Request scope
@Named
class Printer {

    @Inject Greeting greeting;
    private String name;

    public void setName(String name) { this.name=name; }
    public String getName() { return name; }
    public void greet() {
        System.out.println( greeting.greet(name) );
    }
}

Why do we need Scope?



45

• A scope gives an object a well-defined lifecycle context 
> A scoped object can be automatically created “by the container” 

when it is needed and automatically destroyed “by the container” 
when the context in which it was created ends (instead of 
developer is responsible for creating/destroying it in the correct 
scope)

> The client of the scoped object doesn’t know anything about the 
lifecycle of the scoped object 

> Moreover, its state is automatically shared by any clients that 
execute in the same context – an application-scoped object can be 
shared among all clients talking to the application

A Scoped Object in CDI 



46

• The client does not need to know (does not want to know) 
anything about the lifecycle of the scoped objects

public @Named
class Printer {

    // The client does not know anything about the lifecycle of the
    // scoped objects
    @Inject Greeting greeting;
    @Inject Login login;

    public void greet() {
        System.out.println(
                greeting.greet(login.getUser().getName()));
    }
}

Injecting Scoped Objects



47

• @Dependent (default)
> The default scope if none is specified; it means that an object 

exists to serve exactly one client (bean) and has the same 
lifecycle as that client (bean).

• @RequestScoped
> State of an object is maintained during a user’s interaction with a 

web application in a single HTTP request.

• @SessionScoped
> State of an object is maintained during user’s interaction with a 

web application across multiple HTTP requests.

• @ApplicationScoped
> Shared state across all users’ interactions with a web application.

• @ConversationScoped 

Built-in Scopes



48

• Conversation context is demarcated explicitly by the application
> Spans multiple requests
> But “Smaller” than session

• Used when you want to have explicit boundaries of multiple 
request/response conversations within a single session

 @ConversationScoped



49

      public @ConversationScoped
class NumberGuess {

    @Inject Conversation conversation;
    private int number;
    private int min;
    private int max;

    @Inject
    void start(@Random int random) {
        conversation.begin();
        number = random;
        min = 1;
        max = 100;
    }

   // Continued to the next slide

Demarcation of Conversation Context



50

   // Continued from previous page

   public boolean guess(int guess) {
        if (guess == number) {
            conversation.end();
            return true;
        } else {
            if (guess < number && guess > min) {
                min = guess;
            } else if (guess > number && guess < max) {
                max = guess;
            }
            return false;
        }
    }
}

Demarcation of Conversation Context



51

• Built-in qualifier
• The @New qualifier allows the application to obtain a new 

instance of a bean which is not bound to the declared scope, but 
has had dependency injection performed

@Produces @ConversationScoped 
@Special Order getSpecialOrder(@New Order order) {
    ...
    return order;
 }

 @New



52

Lab:Lab:

Exercise 4: ScopeExercise 4: Scope
4531_javaee6_cdi_basics.zip4531_javaee6_cdi_basics.zip



CDI for Java SECDI for Java SE
ApplicationApplication



54

public class Main {

     static BeanContainer beanContainer =  
                                          BeanContainerManager.getInstance();

     public static void main(String[] args) throws Exception {
              Greeting greeting = (Greeting) beanContainer
.                                                          .getBeanByType(Greeting.class);

              System.out.println(greeting.greet("Sang Shin"));

      }

}

CDI Can be use for Java SE app



55

Lab:Lab:

Exercise 7: CDI with Java SE appsExercise 7: CDI with Java SE apps
4531_javaee6_cdi_basics.zip4531_javaee6_cdi_basics.zip



56

  Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

56


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

