
1

Hibernate BasicsHibernate Basics

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

2

Topics

• Why use Object/Relational Mapping(ORM)?
• What is and Why Hibernate?
• Hibernate architecture
• Domain classes
• Instance states
• Persistence life-cycle operations
• Hibernate framework classes
• Configuration
• DAOs

3

Topics covered in other presentations

• Hibernate Criteria API
• Hibernate HQL
• Hibernate Mapping
• Hibernate Fetch modes, N+1 select problem
• Hibernate caching
• Hibernate transaction & locking

4

Why Use ORM?Why Use ORM?

5

Why Object/Relational Mapping (ORM)?

• ORM handles Object-Relational impedance
mismatch

– Relational database is table driven (with rows and
columns) because it is designed for fast query
operation of table-driven data

– We, Java developers, want to work with
classes/objects, not rows and columns, however

– ORM handles the mapping between the two

• If you are not using ORM, you will work directly with
JDBC layer, in which you will have to be
responsible for this mapping

• ORM solutions are mature

6

What is & Why What is & Why
Hibernate?Hibernate?

7

What is Hibernate?
● It is the most popular ORM framework

– Let you work without being constrained by table-
driven relational database model – handles Object-
Relational impedance mismatch

– No need to work with low-level JDBC layer
● Enables transparent POJO persistence

– Lets you build persistent objects following common
OO programing concepts: Inheritance,
polymorphism

8

Why use Hibernate as a ORM
Solution?
● Performance

– High performance object caching
– Configurable materialization strategies

● Sophisticated query facilities
– Criteria API
– Query By Example (QBE)
– Hibernate Query Language (HQL)
– Native SQL

● Proven in the market place

9

Hibernate Hibernate
ArchitectureArchitecture

10

Hibernate Architecture

11

Hibernate Architecture

● The architecture
abstracts the
application away
from the underlying
JDBC/JTA APIs
and lets Hibernate
take care of the
plumbing details.

12

Domain ClassesDomain Classes

13

Domain Classes
● Domain classes are classes in an application that

implement the entities of the business domain (e.g.
Customer and Order in an E-commerce application)

● Hibernate works best if these classes follow some
simple rules, also known as the Plain Old Java
Object (POJO) programming model.

14

Steps to write a Domain Class
● Step 1: Implement a no-argument constructor

– All persistent classes must have a default constructor so that
Hibernate can instantiate them

● Step 2: Provide an identifier property
– This property maps to the primary key column of a database

table.
– The property can be called anything, and its type can be any

primitive type, any primitive "wrapper" type, java.lang.String
or java.util.Date

– Composite key is possible
● Step 3: Declare getter/setter methods for persistent

fields

15

Instance States Instance States
(of Domain Object)(of Domain Object)

16

Instance States

● An instance of a domain class (domain object) may
be in one of three different states, which are
defined with respect to a persistence context
– transient (does not belong to a persistence context)
– persistent (belongs to a persistence context)
– detached (used to belong to a persistence context)

● The persistence context is represented by
Hibernate Session object
– In JPA, the persistence context is represented by

EntityManager, which plays same role of Session in
Hibernate

17

“transient” state

● The instance is not, and has never been associated
with any session (persistence context)

● It has no persistent identity (primary key value)
called “Object Identifier” yet

● It has no corresponding row in the database
● ex) When POJO instance is created outside of a

session meaning before it is persisted, it is in
“transient” state

● Changes made to transient objects do not get
reflected to the database table - They need to be
persisted before the change get reflected to the
database table (when committed)

18

“persistent” state

● The instance is currently associated with a single
session (persistence context).

● It has a persistent identity (primary key value)
called Object Identifier and likely to have a
corresponding row in the database (if it has been
committed before or read from the table)

● Changes made to persistent objects (objects in
“persistent” state) are reflected to the database
tables when they are committed

● ex) When a transient object gets persisted through
save(..) method

19

“detached” state

● The instance was once associated with a
persistence context, but that context was closed, or
the instance was serialized to another process

● It still has a persistent identity (Object identifier)
and, perhaps, a corresponding row in the database

● Used when POJO object instance needs to be sent
over to another program for manipulation without
having persistent context

● Changes made to detached objects do not get
reflected to the database table - They need to be
merged before the change get reflected to the
database table

20

Difference between “transient” and
“detached” Object Instances
● “transient” instance does not have Object identifier

while “detached” instance has Object identifier

21

State Transitions

● Transient instances may be made persistent by
calling save(), persist() or saveOrUpdate()

● Persistent instances may be made transient by
calling delete()

● Any instance returned by a get() or load() method is
persistent

● Detached instances may be made persistent by
calling update(), saveOrUpdate(), lock() or
replicate()

● The state of a transient or detached instance may
also be made persistent as a new persistent
instance by calling merge().

22

Methods ofMethods of
Session InterfaceSession Interface

23

Types of Methods in Session Class

● Life cycle operations
● Transaction and Locking
● Managing resources
● JDBC Connection

24

 Lifecycle Lifecycle
OperationsOperations

25

Lifecycle Operations

● Session interface provides methods for lifecycle
operations

● Result of lifecycle operations affect the instance
state
– Saving objects
– Loading objects
– Getting objects
– Refreshing objects
– Updating objects
– Deleting objects
– Replicating objects

26

Saving Objects
● An object remains to be in “transient” state until it is

saved and moved into “persistent” state, thus
managed by a particular session (belongs to a
particular persistence context)

27

Java methods for saving objects

● From Session interface

// Persist the given transient instance.

// Hibernate assigns a new Object identifier

// and returns it as a return value.

public Serializable save(Object object)

28

Example: Saving Objects

Person person = new Person(); // transient state
person.setName(“Sang Shin”);
session.save(person); // persistent state

// You can get an object identifier via getIdentifiler()
// method
Object identifier = session.getIdentifier(person);

29

Loading Objects

● Used for loading objects from the database
● Each load(..) method requires object's primary key

as an identifier
– The identifier must be Serializable – any primitive

identifier must be converted to object
● Each load(..) method also requires which domain

class or entity name to use to find the object with
the id

● The returned object, which is returned as Object
type, needs to be type-casted to a domain class

● The returned object is in “persistent” state

30

Java methods for loading objects
● From Session interface

// Return the persistent instance of the given entity

// class with the given identifier, assuming that the

// instance exists.

public Object load(Class theClass, Serializable id)

31

Getting Objects

● Works like load() method

32

load() vs. get()

● Only use the load() method if you are sure that the
object exists
– load() method will throw an exception if the unique id

is not found in the database
● If you are not sure that the object exists, then use

one of the get() methods
– get() method will return null if the unique id is not

found in the database

33

Java methods for getting objects
● From Session interface

// Return the persistent instance of the given entity

// class with the given identifier, or null if there is no

// such persistent instance.

public Object get(Class theClass, Serializable id)

34

Example: Getting Objects

Person person = (Person) session.get(Person.class, id);

if (person == null){

System.out.println(“Person is not found for id ” + id);

}

35

Refreshing Objects

● Used to refresh objects from their database
representations in cases where there is a possibility
of persistent object is not in sync. with the database
representation

● Scenarios you might want to do this
– Your Hibernate application is not the only application

working with this data
– Your application executes some SQL directly

against the database
– Your database uses triggers to populate properties

on the object

36

Java methods for Refreshing objects
● From Session interface

// Re-read the state of the given instance from the

// underlying database.

public void refresh(Object object)

37

Updating Objects
● Hibernate (Session) automatically manages any changes

made to the persistent objects
– The objects should be in “persistent” state not “transient”

state in order the changes to be managed
● If a property changes on a “persistent” object, Hibernate

session will perform the change in the database when a
transaction is committed (possibly by queuing the changes
first)

● You can force Hibernate to commit all changes using flush()
method

● You can also determine if the session is dirty through
isDirty() method

38

Merging Objects

● Copy the state of the given object onto the persistent
object with the same identifier.

● If there is no persistent instance currently associated
with the session, it will be loaded.

● Return the persistent instance. If the given instance is
unsaved, save a copy of and return it as a newly
persistent instance.

● The given instance does not become associated with
the session.

39

Example: Merging Objects

 // p1 is “detached” object and remains

 // to be in “detached” state.

 // p1_merged is “persistent” object

 p1_merged = (Person) session.merge(p1);

40

Lab:Lab:

Exercise 1: Session Life- cycle operationsExercise 1: Session Life- cycle operations
3514_hibernate_basics.zip3514_hibernate_basics.zip

41

Hibernate Hibernate
Framework ClassesFramework Classes

42

Hibernate Framework Classes

● org.hibernate.SessionFactory
● org.hibernate.Session
● org.hibernate.Transaction

(We will cover Hibernate annotation in another
session)

43

org.hibernate.Session

● A single-threaded, short-lived object representing a
conversation between the application and the
persistent store

● A session represents a persistence context
– A persistence context is a container of “persistent”

object instances
– A “persistent” object is always associated with a

session (in other terms, belongs to a particular
persistent context) and always has an Object
Identifier

● Handles life-cycle operations - create, read and
delete operations - of persistent objects

● Factory for Transaction

44

org.hibernate.Transaction

● A single-threaded, short-lived object used by the
application to specify atomic unit of work

● Abstracts application from underlying JDBC, JTA or
CORBA transaction.

● However, transaction demarcation, either using the
underlying API or Transaction, is never optional! In
other words, any operations with the database is
always under a transaction.

(We will cover Transaction in detail in Hibernate
Transaction)

45

Lab:Lab:

Exercise 2: Perform Persistence OperationsExercise 2: Perform Persistence Operations
in a Transactionin a Transaction

3514_hibernate_basics.zip3514_hibernate_basics.zip

46

Hibernate Hibernate
ConfigurationConfiguration

47

Two different ways of Configuring
Hibernate

● Programmatic configuration
● XML configuration file

– Specify a full configuration in a file named
hibernate.cfg.xml

– By default, is expected to be in the root of your
classpath

48

Hibernate Configuration File
<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <!-- a SessionFactory instance listed as /jndi/name -->
 <session-factory
 name="java:hibernate/SessionFactory">

 <!-- properties -->
 <property
 name="connection.datasource">java:/comp/env/jdbc/MyDB</property>
 <property name="dialect">org.hibernate.dialect.MySQLDialect</property>
 <property name="show_sql">false</property>
 <property name="transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory
 </property>
 <property name="jta.UserTransaction">
 java:comp/UserTransaction
 </property>

49

Hibernate Configuration File

 <!-- mapping files -->
 <mapping resource="org/hibernate/auction/Item.hbm.xml"/>
 <mapping resource="org/hibernate/auction/Bid.hbm.xml"/>

 <!-- cache settings -->
 <class-cache class="org.hibernate.auction.Item" usage="read-write"/>
 <class-cache class="org.hibernate.auction.Bid" usage="read-only"/>
 <collection-cache collection="org.hibernate.auction.Item.bids"
 usage="read-write"/>

 </session-factory>

</hibernate-configuration>

50

Hibernate Mapping Hibernate Mapping
FilesFiles

51

Hibernate Mapping File

● Object/relational mappings are usually defined in
an XML document.

● The mapping document is designed to be readable
and hand-editable.

● The mapping language is Java-centric, meaning
that mappings are constructed around persistent
class declarations, not table declarations.

● Defines identifier generation, versioning, persistent
properties, and object relationships and the
mapping of these to the database

52

Mapping Classes toMapping Classes to
Tables Tables

53

Mapping classes to tables

● The class element
<class name="domain.Answer"

table="answer"
dynamic-update="false"
dynamic-insert="false">

...

</class>

54

Attributes of <class> element
 <class

 name="ClassName" (1)
 table="tableName" (2)
 discriminator-value="discriminator_value" (3)
 mutable="true|false" (4)
 schema="owner" (5)
 catalog="catalog" (6)
 proxy="ProxyInterface" (7)
 dynamic-update="true|false" (8)
 dynamic-insert="true|false" (9)
 select-before-update="true|false" (10)
 polymorphism="implicit|explicit" (11)
 where="arbitrary sql where condition" (12)
 persister="PersisterClass" (13)
 batch-size="N" (14)
 optimistic-lock="none|version|dirty|all" (15)
 lazy="true|false" (16)
 entity-name="EntityName" (17)
 check="arbitrary sql check condition" (18)
 rowid="rowid" (19)
 subselect="SQL expression" (20)
 abstract="true|false" (21)
 node="element-name"
/>

55

Attributes of <class> element

● name: The fully qualified Java class name of the
persistent class (or interface).

● table (optional - defaults to the unqualified class
name): The name of its database table.

● discriminator-value (optional - defaults to the class
name): A value that distinguishes individual
subclasses, used for polymorphic behavior.

56

Attributes of <class>

● dynamic-update (optional, defaults to false):
Specifies that UPDATE SQL should be generated
at runtime and contain only those columns whose
values have changed.

● dynamic-insert (optional, defaults to false):
Specifies that INSERT SQL should be generated at
runtime and contain only the columns whose values
are not null.

● optimistic-lock (optional, defaults to version):
Determines the optimistic locking strategy.

57

Mapping Properties Mapping Properties
to Columns to Columns

58

Mapping object properties to columns

● Use property element
<property

name="reason"

type="java.lang.String"

update="true"

insert="true"

column="reason"

not-nul=”true” />

59

Attributes of <property> element
 <property
 name="propertyName"
 column="column_name"
 type="typename"
 update="true|false"
 insert="true|false"
 formula="arbitrary SQL expression"
 access="field|property|ClassName"
 lazy="true|false"
 unique="true|false"
 not-null="true|false"
 optimistic-lock="true|false"
 generated="never|insert|always"
 node="element-name|@attribute-name|element/@attribute|."
 index="index_name"
 unique_key="unique_key_id"
 length="L"
 precision="P"
 scale="S"
 />

60

Attributes of <property> element

● name: the name of the property, with an initial
lowercase letter.

● column (optional - defaults to the property name):
the name of the mapped database table column.

● unique (optional): Enable the DDL generation of a
unique constraint for the columns.

● not-null (optional): Enable the DDL generation of a
nullability constraint for the columns.

61

Attributes of <property> element

● optimistic-lock (optional - defaults to true): Specifies
that updates to this property do or do not require
acquisition of the optimistic lock. In other words,
determines if a version increment should occur
when this property is dirty.

● generated (optional - defaults to never): Specifies
that this property value is actually generated by the
database

62

Mapping Id Field Mapping Id Field

63

Mapping Id field

● Use id element
● Use generator sub-element with class attribute, which

specifies the key generation scheme

<class name="Person">

 <id name="id" type="int">

 <generator class="increment"/>

 </id>

 <property name="name" column="cname" type="string"/>

</class>

64

Key Generation Scheme via class
attribute
● class=”increment”

– It generates identifiers of type long, short or int that are
unique only when no other process is inserting data into
the same table. It should not the used in the clustered
environment.

● class=”identity”
– Supports identity columns in DB2, MySQL, MS SQL

Server, Sybase and HypersonicSQL.
● class=”hilo”

– Uses a hi/lo algorithm to efficiently generate identifiers of
type long, short or int, given a table and column

65

Key Generation Scheme via class
attribute
● class=”assigned”

– Lets the application to assign an identifier to the object
before save() is called. This is the default strategy if no
<generator> element is specified.

● class=”native”
– It picks identity, sequence or hilo depending upon the

capabilities of the underlying database.
● class=”uuid”

– Uses a 128-bit UUID algorithm to generate identifiers

66

Lab:Lab:

Exercise 3: Key generationExercise 3: Key generation
3514_hibernate_basics.zip3514_hibernate_basics.zip

67

Data Access Objects Data Access Objects
(DAOs)(DAOs)

68

What is a DAO?

● DAO pattern
– Separation of data access (persistence) logic from

business logic
– Enables easier replacement of database without

affecting business logic
● DAO implementation strategies

– Strategy 1: Runtime pluggable through factory class
(most flexible)

– Strategy 2: Domain DAO interface and
implementation

69

Example: PersonDaoInterface
public interface PersonDaoInterface {

 public void create(Person p) throws SomeException;

 public void delete(Person p) throws SomeException;

 public Person find(Long id) throws SomeException;

 public List findAll() throws SomeException;

 public void update(Person p) throws SomeException;

 public WhateverType

 whateverPersonRelatedMethod(Person p)

 throws SomeException;

}

70

Lab:Lab:

Exercise 4: DAO PatternExercise 4: DAO Pattern
3514_hibernate_basics.zip3514_hibernate_basics.zip

71

 Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

71

	Slide 1
	How do you use it?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

