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““Code with Passion!”Code with Passion!”
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Topics

• What is and Why JavaScript?
• How and Where do you place JavaScript code? 
• JavaScript language 
> Variables, statements, code blocks, control flow

• JavaScript functions
> Defining functions – 3 different ways
> Calling functions
> Function as a method

• JavaScript data types
• JavaScript objects
> JavaScript object is a Hash
> 3 different ways of creating a JavaScript object



  
What is and WhyWhat is and Why
JavaScript?JavaScript?
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What is JavaScript?

• Scripting language
> Scripting language is a lightweight programming language

• Used to add interactivity to HTML pages
> JavaScript code could be embedded directly into HTML pages or in a 

separate file, which is referenced from the HTML page

• JavaScript is traditionally used as client-only (within HTML page) 
language – now slowly gaining some traction as a standalone 
and server side language as well 
> Example: Node.js
> Our focus in this codecamp is on the client side only
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What can JavaScript do?

• JavaScript gives HTML page writers a programming tool for 
adding behavior
> JavaScript can put dynamic text into an HTML page
> JavaScript can react to events 
> JavaScript can read and write HTML elements
> JavaScript can be used to validate input data
> JavaScript can be used to detect the browser type & version
> JavaScript can be used to detect whether a browser support a feature 

or not
> JavaScript can be used to animate HTML elements
> ...



6

Lab:Lab:
Exercise 0: Install Chrome Browser &Exercise 0: Install Chrome Browser &

Brackets (or VSC)Brackets (or VSC)
4262_javascript_basics.zip4262_javascript_basics.zip



  
How and  Where Do You How and  Where Do You 
Place JavaScript CodePlace JavaScript Code
(in an HTML page)?(in an HTML page)?
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How to put JavaScript code into an HTML 
page?

• Use the <script> tag along with type attribute 
• Scripts can be in the either <head> section and/or <body> 

section

<html>
<head>
<script type="text/javascript">
...
</script>
</head>
<body>
<script type="text/javascript">
...
</script>
</body>
</html>
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Referencing External JavaScript File

• JavaScript code can in a separate script file
• Script file can be provided locally or remotely 
• Accessible via src attribute

<html>
<head>
<script language="JavaScript"
            type="text/javascript"
            src="http://somesite/myOwnJavaScript.js">              
</script> 
<script language="JavaScript"
            type="text/javascript"
            src="myOwnSubdirectory/myOwn2ndJavaScript.js">
</script>

remotely located

locally located
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Lab:Lab:
Exercise 1: JavaScript CodeExercise 1: JavaScript Code
4262_javascript_basics.zip4262_javascript_basics.zip



  
JavaScript Language:JavaScript Language:
VariablesVariables



12

JavaScript Variables

• You create a variable with or without the var keyword (scope will 
be different, however – explained in the following slide)

var strname = <some value>;
strname = <some value>;

• Variable names are case sensitive
> yes and Yes are two different variables

• Variable names must begin with a letter, the $ character, or the 
underscore character

myname, my_name, $myname

• If you declare a variable without assigning any value to it, its type 
is undefined

var myvar; // undefined
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JavaScript Variable Scope

• In JavaScript, the variable scope is aligned with a function 
> Not with a block as in the case of C or Java

• Global scope variables (or global variables)
> If you declare a variable outside a function, it is in global scope
> All functions on the same page can access any global variables
> The usage of global variables are discouraged because it is prone to 

be overridden accidentally

• Local scope variables (or local variables)
> When you declare a variable with “var” and within a function, the 

variable can only be accessed within that function  - local scope 
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Usage of “var” keyword & Variable Scope

• In the global scope, there's no difference between “var x” and “x” – 
they are both in global scope

• In the local scope – meaning inside a function, then "var" will create a 
local variable

// These are both global variables
var foo = 1;
bar = 2;

function() {
    var foo = 1; // Local
    bar = 2;     // Global

    // Execute an anonymous function
    (function() {
        var wibble = 1; // Local
        foo = 2; // Inherits from scope above (creating a closure)
        moo = 3; // Global
    }())
}
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Lab:Lab:
Exercise 2: VariablesExercise 2: Variables

4262_javascript_basics.zip4262_javascript_basics.zip



  
JavaScript Language:JavaScript Language:
Statements & Code BlocksStatements & Code Blocks
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JavaScript Statements

• JavaScript statements are "instructions" to be "executed"  
> JavaScript statements are often called JavaScript code

• Semicolons separate JavaScript statements (it is optional, 
however)

var x = 20;
var y = 30;
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");

// The alert message below gets executed when the page is loaded
alert("Hello Boston! This message gets displayed when a page is loaded.");

function displaymessage() {
    alert("Hello World! ");
}
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JavaScript Code Blocks

• JavaScript statements can be grouped together in a code block, 
inside curly brackets {...}

• The most common form of code block is a function

function displaymessage() {
    var x = 20;
    var y = 30;
    alert("Result = " + (x+y));
}



  
JavaScript Language:JavaScript Language:
Control flowControl flow
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JavaScript Language

• Conditional statement
> if, if.. else, switch

• Loop
> for loop, while loop, do-while loop

• try...catch
• throw
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Lab:Lab:
Exercise 3: Control flowExercise 3: Control flow

4262_javascript_basics.zip4262_javascript_basics.zip



  
JavaScript Functions:JavaScript Functions:
Defining FunctionsDefining Functions
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What is a Function?

• A function is a JavaScript procedure—a set of statements that 
performs a task or calculates a value 

• A function can take 0 or more named parameters
• The function body can contain as many statements as you like, 

and can declare its own variables which are local to that function
> Variables with “var” keyword within the function are local 

scope variables
> Variables without “var” keyword within the function are global 

scope variables
• The return statement can be used to return a value at any time, 

terminating the function 
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Function Definitions (Declarations)

• A function can be defined (also called “declared”) in several 
ways
1. Through function statement
2. Through function expression
3. Through function constructor (rarely used)

• When a function is declared, internally a function object is 
created and that function object is assigned to a property of the 
owning object
> The owning object of the top-level function is “window” for browser

• Note that function definition (declaration) is just that – it is NOT 
function invocation (function execution)
> In other words, a function object gets created but it is not executed
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#1: Through function Statement

• A function statement is made of function keyword, followed by
> The optional name of the function
> A list of arguments to the function
> The JavaScript statements enclosed in curly braces, { }

• A function statement is a genuine JavaScript statement
> Execution of the function statement creates a function object 

• A function object, once created, is assigned to a property of 
owner object – the property name is the same as function name

// Declare a named function as a function statement.
// “myNamedFunction” property of owner object points to
// newly created function object.
function myNamedFunction(arg1, arg2) {
    console.log(arg1, arg2);
}
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#2: Through function Expression

• A function can be defined as a function expression
> The function has to be assigned to a variable or can be passed as an 

argument in this case

• A function expression can be anonymous (name is optional)

// Create a function object via anonymous function expression and 
// assign it to myFunction1 variable
var myFunction1 = function(something){
    console.log(something);
}

• A function object is created and then assigned to the property of 
the owning object – the property name is the variable name, 
myFunction1 in the example above
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#3: Through function Constructor

• The Function() constructor expects any number of string 
arguments

• The last argument is the body of the function - it can contain 
arbitrary JavaScript statements, separated from each other by 
semicolons 

// Create a function through Function Constructor
var my_func = new Function("x", "y", "return x+y;");

/* This is the same as above
function my_func(x, y){ 
   return x+y; 
}
*/

my_func(10,20);



  
JavaScript Functions:JavaScript Functions:
A Function as a MethodA Function as a Method
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A Function as a Method

• A property of a JavaScript object whose value is a function object 
is called a method

// Declare a function
function functionDefinedSomewhere(something) {
    console.log(something)
}

// Create a JavaScript object 
var myPerson = {
    firstname : "John",
    lastname : "Doe",
    age : 50,
    tellYourage : function() { // Anonymous function without argument
        console.log("The age is " + this.age);
    },
    tellSomething : function(something) { // Anonymous function with an argument
        console.log(something);
    },
    tellWhatever : functionDefinedSomewhere // Named function
}

tellYourage, tellSomething, 
and tellWhatever methods



  
JavaScript Functions:JavaScript Functions:
Function InvocationFunction Invocation
(Function execution)(Function execution)
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Function Invocation (Function Execution)

• Defining a function does not invoke(execute, call) it
> Defining the function simply creates a function object and assigns it to 

a property of owning object
> In order to execute the function (perform some task), you have to 

explicitly invoke it

• A function gets executed only by an invocation (or by an event if 
the function is configured as event handler) 
> In order to prevent the browser from executing a script as soon as the 

page is loaded, you want to write your script as a function

• You may invoke a function from anywhere within a page (or even 
from other pages if the function is embedded in an external .js 
file)
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Function Invocation (Function Execution)

<script type="text/javascript">

// Declare/define a named function as a function statement
function myNamedFunction(something) {
    console.log(something);
}

// Declare/define an anonymous function expression and assign it to
// myFunction1 variable
var myFunction1 = function(something){
    console.log(something);
}

var myFunction2 = myNamedFunction;

// Invoke/execute/call functions 
myNamedFunction("Life is good!");
myFunction1("Hello!");
myFunction2("Goodbye!");

</script>

Function invocation

Function definition

Function definition
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Function Invocation via Event
<html>
<head>
<title/>
<script type="text/javascript">
   // If alert("Hello world!!") below had not been written within a
   // function, it would have been executed as soon as the page gets loaded. 
   function displaymessage() {
        alert("Hello World!")
   }
</script>
</head>

<body>
<form>
<input type="button" value="Click me!"
          onclick="displaymessage()" >
</form>
</body>
</html>

Function invocation via event
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Lab:Lab:
Exercise 4: Defining and Invoking functions Exercise 4: Defining and Invoking functions 

4262_javascript_basics.zip4262_javascript_basics.zip



  
JavaScript Data Types JavaScript Data Types 
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JavaScript Data Types

• JavaScript is a loosely typed or dynamic type language
> You don't have to declare a type of a variable
> The type gets determined automatically when the program gets 

executed
> You can use a same variable as different types

var foo = 35;              // foo is Number type
var foo = “passion”;   // foo is String type
var foo = true;           // foo is Boolean type
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JavaScript Data Types

• There are 7 data types 
• 6 data types are primitive types
> Boolean, Null, Undefined, Number, String, Symbol 
> Primitive types define immutable values (values, which are incapable 

of being changed) - these immutable values of the primitive types are 
valled as "primitive values"

• The remaining data type is Object type
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Primitive types

• Boolean type
> Can have two values: true or false

• Null type
> Has exactly one value: null

• Undefined type
> A variable that has not been assigned a value has the valued 

undefined

• Number type
• String type
• Symbol type (introduced in ECMAScript 6)
> Unique and immutable 
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Object Type 

• A JavaScript object has properties and methods
> Example: String JavaScript object has length property and 

toUpperCase() method

<script type="text/javascript">

var txt="Hello World!"
document.write(txt.length)
document.write(txt.toUpperCase())

</script>
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Lab:Lab:
Exercise 5: Object typesExercise 5: Object types

4262_javascript_basics.zip4262_javascript_basics.zip



  
JavaScript Objects:JavaScript Objects:
Hash (Associative Array)Hash (Associative Array)
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JavaScript Object is a Hash

• A JavaScript object is essentially a hash (an associative 
array) with property-name/value pairs 
> Property name has to be unique
> It is like a Map in Java
> There is no exception - even a function object is a hash

{
     name1: value1,
     name2: value2,
     name3: value3,
     ....
     nameN: valueN
}
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How to Refer Property Names

• The following two lines of code are semantically 
equivalent

myObject.myfield = “something”;
myObject['myfield'] = “something”;  

• [..] notation can take variable

var x = “test”;
myObject[x] = “Passion!”;
console.log(myPerson.test);  // Passion!
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Value of a Property Can Be function object

var myPerson = {
        firstname: "John",
        lastname: "Doe",
        age: 50,
        tellYourage: function () {         // Anonymous function without argument
              alert(“The age is ” + this.age );
        },
        tellSomething: function(something) {  // Anonymous function with an argument
              alert(something);
        },
        tellWhatever: functionDefinedSomewhere  // Named function
 }

function functionDefinedSomewhere(something){
        alert(something)
}

myPerson.tellYourage();
myPerson.tellSomething(“Life is good!”);
myPerson.tellWhatever(“Hello”);

The value of the tellSomething
property is a function object
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Value can be another Java Script Object

    var myVar = {
         count: 20,
         person: myPerson  // myPerson was defined in previous slide
    }

    myVar.person.tellSomething("Life is REALLY REALLY good!");
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JavaScript Object vs. Java Object

• Similarities
> Both has properties and methods

• Differences
> JavaScript object can be dynamically typed (while in Java, object is 

statically typed)
> In JavaScript, properties and methods can be added dynamically to a 

JavaScript object during runtime (while in Java, properties and 
methods need to be defined at compile time)

> In JavaScript, a method is defined by assigning a function object to a 
property



  
JavaScript Objects;JavaScript Objects;
3 Different Ways of3 Different Ways of
Creating JavaScriptCreating JavaScript
ObjectsObjects
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3 Ways of Creating Your Own 
JavaScript Objects

1. Create an object instance as Hash Literal (You have already 
seen this) – preferred 

2. Define a function as a Constructor first and then create an 
instance of an object from it

3. Create a direct instance of an object by using built-in constructor 
of the built-in “Object” object
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Option #1: Creating JavaScript Object as a 
Hash Literal

    // Create JavaScript object as a Hash Literal then assign to “personObj”
var personObj = {
        firstname: "John",
        lastname: "Doe",
        age: 50,
        tellYourage: function () {
              alert(“The age is ” + this.age );
        }
        tellSomething: function(something) {
              alert(something);
        }
 }

// Call methods of “personObj” JavaScript object
personObj.tellYourage();
personObj.tellSomething(“Life is good!”);
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Option #2: Create from a Constructor 
Function (Template)

• A function defines the structure of a JavaScript object – it plays a 
role of a template 

// Define a Constructor function
function Person(firstname,lastname,age,eyecolor){
    this.firstname=firstname;
    this.lastname=lastname;
    this.age=age;
    this.tellYourage=function(){
              alert(“This age is ” + this.age);
    }
}

// Continued in the next slide
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Option #2: Create from a Constructor 
Function (Continued)

• Once you have a Constructor function (as you saw in the 
previous slide), you can create new instances of JavaScript 
object using new keyword

myFather=new Person("John","Doe",50,"blue");
myMother=new Person("Sally","Rally",48,"green");

• You can then add new properties and functions to new objects
myFather.newField = “some data”;
myFather.myfunction = function() {
      alert(this["fullName"] + ” is ” + this.age);
}
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Option #3: Create a Direct Instance of a 
JavaScript Object from “Object” object 

• By invoking the built-in constructor for the Object object
// Initially empty with no properties or methods
personObj=new Object();  // same as personObj = { }

• Add properties to it
personObj.firstname="John";
personObj.age=50;

• Add an anonymous function to the personObj 
personObj.tellYourage=function(){
    alert(“This age is ” + this.age);
}
// You can call then tellYourage function as following
personObj.tellYourage();
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Option #3: Create a Direct Instance of a 
JavaScript Object from “Object”  (Continued)

• Add a pre-defined function
function tellYourage(){
    alert(“The age is” + this.age);
}
personObj.tellYourage=tellYourage;

• By the way, note that the following two lines of code are doing 
completely different things

// Set property with a function
personObj.tellYourage=tellYourage; 
// Set property with returned value of the function
personObj.tellYourage=tellYourage(); 
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Lab:Lab:
Exercise 6: Create objectsExercise 6: Create objects
4262_javascript_basics.zip4262_javascript_basics.zip
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    Code with Passion!Code with Passion!
JPassion.comJPassion.com
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