
1

JavaScript Basics JavaScript Basics

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• What is and Why JavaScript?
• How and Where do you place JavaScript code?
• JavaScript language
> Variables, statements, code blocks, control flow

• JavaScript functions
> Defining functions – 3 different ways
> Calling functions
> Function as a method

• JavaScript data types
• JavaScript objects
> JavaScript object is a Hash
> 3 different ways of creating a JavaScript object

What is and WhyWhat is and Why
JavaScript?JavaScript?

4

What is JavaScript?

• Scripting language
> Scripting language is a lightweight programming language

• Used to add interactivity to HTML pages
> JavaScript code could be embedded directly into HTML pages or in a

separate file, which is referenced from the HTML page

• JavaScript is traditionally used as client-only (within HTML page)
language – now slowly gaining some traction as a standalone
and server side language as well
> Example: Node.js
> Our focus in this codecamp is on the client side only

5

What can JavaScript do?

• JavaScript gives HTML page writers a programming tool for
adding behavior
> JavaScript can put dynamic text into an HTML page
> JavaScript can react to events
> JavaScript can read and write HTML elements
> JavaScript can be used to validate input data
> JavaScript can be used to detect the browser type & version
> JavaScript can be used to detect whether a browser support a feature

or not
> JavaScript can be used to animate HTML elements
> ...

6

Lab:Lab:
Exercise 0: Install Chrome Browser &Exercise 0: Install Chrome Browser &

Brackets (or VSC)Brackets (or VSC)
4262_javascript_basics.zip4262_javascript_basics.zip

How and Where Do You How and Where Do You
Place JavaScript CodePlace JavaScript Code
(in an HTML page)?(in an HTML page)?

8

How to put JavaScript code into an HTML
page?

• Use the <script> tag along with type attribute
• Scripts can be in the either <head> section and/or <body>

section

<html>
<head>
<script type="text/javascript">
...
</script>
</head>
<body>
<script type="text/javascript">
...
</script>
</body>
</html>

9

Referencing External JavaScript File

• JavaScript code can in a separate script file
• Script file can be provided locally or remotely
• Accessible via src attribute

<html>
<head>
<script language="JavaScript"
 type="text/javascript"
 src="http://somesite/myOwnJavaScript.js">
</script>
<script language="JavaScript"
 type="text/javascript"
 src="myOwnSubdirectory/myOwn2ndJavaScript.js">
</script>

remotely located

locally located

10

Lab:Lab:
Exercise 1: JavaScript CodeExercise 1: JavaScript Code
4262_javascript_basics.zip4262_javascript_basics.zip

JavaScript Language:JavaScript Language:
VariablesVariables

12

JavaScript Variables

• You create a variable with or without the var keyword (scope will
be different, however – explained in the following slide)

var strname = <some value>;
strname = <some value>;

• Variable names are case sensitive
> yes and Yes are two different variables

• Variable names must begin with a letter, the $ character, or the
underscore character

myname, my_name, $myname

• If you declare a variable without assigning any value to it, its type
is undefined

var myvar; // undefined

13

JavaScript Variable Scope

• In JavaScript, the variable scope is aligned with a function
> Not with a block as in the case of C or Java

• Global scope variables (or global variables)
> If you declare a variable outside a function, it is in global scope
> All functions on the same page can access any global variables
> The usage of global variables are discouraged because it is prone to

be overridden accidentally

• Local scope variables (or local variables)
> When you declare a variable with “var” and within a function, the

variable can only be accessed within that function - local scope

14

Usage of “var” keyword & Variable Scope

• In the global scope, there's no difference between “var x” and “x” –
they are both in global scope

• In the local scope – meaning inside a function, then "var" will create a
local variable

// These are both global variables
var foo = 1;
bar = 2;

function() {
 var foo = 1; // Local
 bar = 2; // Global

 // Execute an anonymous function
 (function() {
 var wibble = 1; // Local
 foo = 2; // Inherits from scope above (creating a closure)
 moo = 3; // Global
 }())
}

15

Lab:Lab:
Exercise 2: VariablesExercise 2: Variables

4262_javascript_basics.zip4262_javascript_basics.zip

JavaScript Language:JavaScript Language:
Statements & Code BlocksStatements & Code Blocks

17

JavaScript Statements

• JavaScript statements are "instructions" to be "executed"
> JavaScript statements are often called JavaScript code

• Semicolons separate JavaScript statements (it is optional,
however)

var x = 20;
var y = 30;
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");

// The alert message below gets executed when the page is loaded
alert("Hello Boston! This message gets displayed when a page is loaded.");

function displaymessage() {
 alert("Hello World! ");
}

18

JavaScript Code Blocks

• JavaScript statements can be grouped together in a code block,
inside curly brackets {...}

• The most common form of code block is a function

function displaymessage() {
 var x = 20;
 var y = 30;
 alert("Result = " + (x+y));
}

JavaScript Language:JavaScript Language:
Control flowControl flow

20

JavaScript Language

• Conditional statement
> if, if.. else, switch

• Loop
> for loop, while loop, do-while loop

• try...catch
• throw

21

Lab:Lab:
Exercise 3: Control flowExercise 3: Control flow

4262_javascript_basics.zip4262_javascript_basics.zip

JavaScript Functions:JavaScript Functions:
Defining FunctionsDefining Functions

23

What is a Function?

• A function is a JavaScript procedure—a set of statements that
performs a task or calculates a value

• A function can take 0 or more named parameters
• The function body can contain as many statements as you like,

and can declare its own variables which are local to that function
> Variables with “var” keyword within the function are local

scope variables
> Variables without “var” keyword within the function are global

scope variables
• The return statement can be used to return a value at any time,

terminating the function

24

Function Definitions (Declarations)

• A function can be defined (also called “declared”) in several
ways
1. Through function statement
2. Through function expression
3. Through function constructor (rarely used)

• When a function is declared, internally a function object is
created and that function object is assigned to a property of the
owning object
> The owning object of the top-level function is “window” for browser

• Note that function definition (declaration) is just that – it is NOT
function invocation (function execution)
> In other words, a function object gets created but it is not executed

25

#1: Through function Statement

• A function statement is made of function keyword, followed by
> The optional name of the function
> A list of arguments to the function
> The JavaScript statements enclosed in curly braces, { }

• A function statement is a genuine JavaScript statement
> Execution of the function statement creates a function object

• A function object, once created, is assigned to a property of
owner object – the property name is the same as function name

// Declare a named function as a function statement.
// “myNamedFunction” property of owner object points to
// newly created function object.
function myNamedFunction(arg1, arg2) {
 console.log(arg1, arg2);
}

26

#2: Through function Expression

• A function can be defined as a function expression
> The function has to be assigned to a variable or can be passed as an

argument in this case

• A function expression can be anonymous (name is optional)

// Create a function object via anonymous function expression and
// assign it to myFunction1 variable
var myFunction1 = function(something){
 console.log(something);
}

• A function object is created and then assigned to the property of
the owning object – the property name is the variable name,
myFunction1 in the example above

27

#3: Through function Constructor

• The Function() constructor expects any number of string
arguments

• The last argument is the body of the function - it can contain
arbitrary JavaScript statements, separated from each other by
semicolons

// Create a function through Function Constructor
var my_func = new Function("x", "y", "return x+y;");

/* This is the same as above
function my_func(x, y){
 return x+y;
}
*/

my_func(10,20);

JavaScript Functions:JavaScript Functions:
A Function as a MethodA Function as a Method

29

A Function as a Method

• A property of a JavaScript object whose value is a function object
is called a method

// Declare a function
function functionDefinedSomewhere(something) {
 console.log(something)
}

// Create a JavaScript object
var myPerson = {
 firstname : "John",
 lastname : "Doe",
 age : 50,
 tellYourage : function() { // Anonymous function without argument
 console.log("The age is " + this.age);
 },
 tellSomething : function(something) { // Anonymous function with an argument
 console.log(something);
 },
 tellWhatever : functionDefinedSomewhere // Named function
}

tellYourage, tellSomething,
and tellWhatever methods

JavaScript Functions:JavaScript Functions:
Function InvocationFunction Invocation
(Function execution)(Function execution)

31

Function Invocation (Function Execution)

• Defining a function does not invoke(execute, call) it
> Defining the function simply creates a function object and assigns it to

a property of owning object
> In order to execute the function (perform some task), you have to

explicitly invoke it

• A function gets executed only by an invocation (or by an event if
the function is configured as event handler)
> In order to prevent the browser from executing a script as soon as the

page is loaded, you want to write your script as a function

• You may invoke a function from anywhere within a page (or even
from other pages if the function is embedded in an external .js
file)

32

Function Invocation (Function Execution)

<script type="text/javascript">

// Declare/define a named function as a function statement
function myNamedFunction(something) {
 console.log(something);
}

// Declare/define an anonymous function expression and assign it to
// myFunction1 variable
var myFunction1 = function(something){
 console.log(something);
}

var myFunction2 = myNamedFunction;

// Invoke/execute/call functions
myNamedFunction("Life is good!");
myFunction1("Hello!");
myFunction2("Goodbye!");

</script>

Function invocation

Function definition

Function definition

33

Function Invocation via Event
<html>
<head>
<title/>
<script type="text/javascript">
 // If alert("Hello world!!") below had not been written within a
 // function, it would have been executed as soon as the page gets loaded.
 function displaymessage() {
 alert("Hello World!")
 }
</script>
</head>

<body>
<form>
<input type="button" value="Click me!"
 onclick="displaymessage()" >
</form>
</body>
</html>

Function invocation via event

34

Lab:Lab:
Exercise 4: Defining and Invoking functions Exercise 4: Defining and Invoking functions

4262_javascript_basics.zip4262_javascript_basics.zip

JavaScript Data Types JavaScript Data Types

36

JavaScript Data Types

• JavaScript is a loosely typed or dynamic type language
> You don't have to declare a type of a variable
> The type gets determined automatically when the program gets

executed
> You can use a same variable as different types

var foo = 35; // foo is Number type
var foo = “passion”; // foo is String type
var foo = true; // foo is Boolean type

37

JavaScript Data Types

• There are 7 data types
• 6 data types are primitive types
> Boolean, Null, Undefined, Number, String, Symbol
> Primitive types define immutable values (values, which are incapable

of being changed) - these immutable values of the primitive types are
valled as "primitive values"

• The remaining data type is Object type

38

Primitive types

• Boolean type
> Can have two values: true or false

• Null type
> Has exactly one value: null

• Undefined type
> A variable that has not been assigned a value has the valued

undefined

• Number type
• String type
• Symbol type (introduced in ECMAScript 6)
> Unique and immutable

39

Object Type

• A JavaScript object has properties and methods
> Example: String JavaScript object has length property and

toUpperCase() method

<script type="text/javascript">

var txt="Hello World!"
document.write(txt.length)
document.write(txt.toUpperCase())

</script>

40

Lab:Lab:
Exercise 5: Object typesExercise 5: Object types

4262_javascript_basics.zip4262_javascript_basics.zip

JavaScript Objects:JavaScript Objects:
Hash (Associative Array)Hash (Associative Array)

42

JavaScript Object is a Hash

• A JavaScript object is essentially a hash (an associative
array) with property-name/value pairs
> Property name has to be unique
> It is like a Map in Java
> There is no exception - even a function object is a hash

{
 name1: value1,
 name2: value2,
 name3: value3,

 nameN: valueN
}

43

How to Refer Property Names

• The following two lines of code are semantically
equivalent

myObject.myfield = “something”;
myObject['myfield'] = “something”;

• [..] notation can take variable

var x = “test”;
myObject[x] = “Passion!”;
console.log(myPerson.test); // Passion!

44

Value of a Property Can Be function object

var myPerson = {
 firstname: "John",
 lastname: "Doe",
 age: 50,
 tellYourage: function () { // Anonymous function without argument
 alert(“The age is ” + this.age);
 },
 tellSomething: function(something) { // Anonymous function with an argument
 alert(something);
 },
 tellWhatever: functionDefinedSomewhere // Named function
 }

function functionDefinedSomewhere(something){
 alert(something)
}

myPerson.tellYourage();
myPerson.tellSomething(“Life is good!”);
myPerson.tellWhatever(“Hello”);

The value of the tellSomething
property is a function object

45

Value can be another Java Script Object

 var myVar = {
 count: 20,
 person: myPerson // myPerson was defined in previous slide
 }

 myVar.person.tellSomething("Life is REALLY REALLY good!");

46

JavaScript Object vs. Java Object

• Similarities
> Both has properties and methods

• Differences
> JavaScript object can be dynamically typed (while in Java, object is

statically typed)
> In JavaScript, properties and methods can be added dynamically to a

JavaScript object during runtime (while in Java, properties and
methods need to be defined at compile time)

> In JavaScript, a method is defined by assigning a function object to a
property

JavaScript Objects;JavaScript Objects;
3 Different Ways of3 Different Ways of
Creating JavaScriptCreating JavaScript
ObjectsObjects

48

3 Ways of Creating Your Own
JavaScript Objects

1. Create an object instance as Hash Literal (You have already
seen this) – preferred

2. Define a function as a Constructor first and then create an
instance of an object from it

3. Create a direct instance of an object by using built-in constructor
of the built-in “Object” object

49

Option #1: Creating JavaScript Object as a
Hash Literal

 // Create JavaScript object as a Hash Literal then assign to “personObj”
var personObj = {
 firstname: "John",
 lastname: "Doe",
 age: 50,
 tellYourage: function () {
 alert(“The age is ” + this.age);
 }
 tellSomething: function(something) {
 alert(something);
 }
 }

// Call methods of “personObj” JavaScript object
personObj.tellYourage();
personObj.tellSomething(“Life is good!”);

50

Option #2: Create from a Constructor
Function (Template)

• A function defines the structure of a JavaScript object – it plays a
role of a template

// Define a Constructor function
function Person(firstname,lastname,age,eyecolor){
 this.firstname=firstname;
 this.lastname=lastname;
 this.age=age;
 this.tellYourage=function(){
 alert(“This age is ” + this.age);
 }
}

// Continued in the next slide

51

Option #2: Create from a Constructor
Function (Continued)

• Once you have a Constructor function (as you saw in the
previous slide), you can create new instances of JavaScript
object using new keyword

myFather=new Person("John","Doe",50,"blue");
myMother=new Person("Sally","Rally",48,"green");

• You can then add new properties and functions to new objects
myFather.newField = “some data”;
myFather.myfunction = function() {
 alert(this["fullName"] + ” is ” + this.age);
}

52

Option #3: Create a Direct Instance of a
JavaScript Object from “Object” object

• By invoking the built-in constructor for the Object object
// Initially empty with no properties or methods
personObj=new Object(); // same as personObj = { }

• Add properties to it
personObj.firstname="John";
personObj.age=50;

• Add an anonymous function to the personObj
personObj.tellYourage=function(){
 alert(“This age is ” + this.age);
}
// You can call then tellYourage function as following
personObj.tellYourage();

53

Option #3: Create a Direct Instance of a
JavaScript Object from “Object” (Continued)

• Add a pre-defined function
function tellYourage(){
 alert(“The age is” + this.age);
}
personObj.tellYourage=tellYourage;

• By the way, note that the following two lines of code are doing
completely different things

// Set property with a function
personObj.tellYourage=tellYourage;
// Set property with returned value of the function
personObj.tellYourage=tellYourage();

54

Lab:Lab:
Exercise 6: Create objectsExercise 6: Create objects
4262_javascript_basics.zip4262_javascript_basics.zip

55

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

55

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

