
1

 JavaScript Tools:JavaScript Tools:
JSLint & JSHintJSLint & JSHint

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• What is JSLint?
• Things that are being flagged by JSLint
• What is JSHint?

What is JSLint?What is JSLint?

4

What is JSLint?

• JSLint is a static code analysis tool used in software
development for checking if JavaScript source code complies
with coding rules

• It was developed by Douglas Crockford
• It is provided primarily as an online tool, but there are also

command-line version

5

JSLint Online Tool

• http://www.jslint.com/

6

JSLint Command Line Tool

• Install “jslint” plugin to your Node.js installation
> npm install jslint -g

• Then run “jslint” command
> jslint myapp.js

7

JSLint Plugins for text editors and IDEs

• Editors
> Sublime Text, TextMate, VIM, Emacs, Nodepad++

• IDE's
> Visual Studio, Eclipse, IntelliJ, NetBeans

• Build tool
> Maven

Things that are flaggedThings that are flagged
by JSLintby JSLint

9

Global Variables

• Issues
> JavaScript's biggest problem is its dependence on global

variables, particularly implied global variables
> If a variable is not explicitly declared (usually with the “var”

statement), then JavaScript assumes that the variable was global.
This can mask misspelled names and other problems

• What JSLint expects
> JSLint expects that all variables and functions are declared before

they are used or invoked
> This allows it to detect implied global variables. It is also good

practice because it makes programs easier to read.

// The declaration should appear near the top of the file. It must appear
// before the use of the variables it declares.
var getElementByAttribute, breakCycles, hanoi;

10

Scopes

• Issues
> In many languages, a block introduces a scope. Variables

introduced in a block are not visible outside of the block.
> In JavaScript, blocks do not introduce a scope. There is only

function-scope. A variable introduced anywhere in a function is
visible everywhere in the function. JavaScript's blocks confuse
experienced programmers and lead to errors because the familiar
syntax makes a false promise.

• What JSLint expects
> JSLint expects blocks with function, if, switch, while, for, do, and

try statements and nowhere else
> Because JavaScript does not have block scope, it is wiser to

declare all of a function's variables at the top of the function. It is
recommended that a single “var” statement be used per function.

11

var

• Issues
> JavaScript allows var definitions to occur anywhere within a

function. JSLint is more strict.

• What JSLint expects
> JSLint expects that a var will be declared only once, and that it will

be declared before it is used.
> JSLint expects that a function will be declared before it is used.
> JSLint expects that parameters will not also be declared as vars.
> JSLint does not expect the arguments array to be declared as a

var.
> JSLint does not expect that a var will be defined in a block. This is

because JavaScript blocks do not have block scope. This can
have unexpected consequences. Define all variables at the top of
the function.

12

eval

• Issues
> eval is evil
> The eval function (and its relatives, Function, setTimeout, and

setInterval) provide access to the JavaScript compiler. This is
sometimes necessary, but in most cases it indicates the presence
of extremely bad coding. The eval function is the most misused
feature of JavaScript.

• What JSLint expects
> JSLint expects no usage of eval

13

Constructor Function and “new”

• Issues
> Constructor functions are functions that are designed to be used

with the new prefix. The new prefix creates a new object based on
the function's prototype, and binds that object to the function's
implied this parameter. If you neglect to use the new prefix, no
new object will be made and this will be bound to the global object.
This is a serious mistake.

• What JSLint expects
> JSLint enforces the convention that constructor functions be given

names with initial uppercase
> JSLint does not expect to see a function invocation with an initial

uppercase name unless it has the new prefix
> JSLint does not expect to see the new prefix used with functions

whose names do not start with initial uppercase.

14

Constructor Function and “new”

• Issues
> Constructor functions are functions that are designed to be used

with the new prefix. The new prefix creates a new object based on
the function's prototype, and binds that object to the function's
implied this parameter. If you neglect to use the new prefix, no
new object will be made and this will be bound to the global object.
This is a serious mistake.

• What JSLint expects
> JSLint enforces the convention that constructor functions be given

names with initial uppercase
> JSLint does not expect to see a function invocation with an initial

uppercase name unless it has the new prefix
> JSLint does not expect to see the new prefix used with functions

whose names do not start with initial uppercase.

15

Properties

• Issues
> Since JavaScript is a loosely-typed, dynamic-object language, it is

not possible to determine at compile time if property names are
spelled correctly. JSLint provides some assistance with this.

• What JSLint does
> At the bottom of its report, JSLint displays a /*properties*/

directive. It contains all of the names and string literals that were
used with dot notation, subscript notation, and object literals to
name the properties of objects. You can look through the list for
misspellings. This is to make misspellings easier to spot.

16

“use strict”

• What you see when you do not use “use strict” in your function
> Problem at line 1 character 1: Missing "use strict" statement.

• What is “use strict” for?
> Strict Mode is a new feature in ECMAScript 5 that allows you to

place a program, or a function, in a "strict" operating context. This
strict context prevents certain actions from being taken and throws
more exceptions

• Strict mode helps out in a couple ways
> It catches some common coding mistakes, throwing exceptions.
> It prevents, or throws errors, when relatively "unsafe" actions are

taken (such as gaining access to the global object).
> It disables features that are confusing or poorly thought out

17

Lab:Lab:
Exercise 1: JSLintExercise 1: JSLint

4253_javascript_tools.zip4253_javascript_tools.zip

What is JSHint?What is JSHint?

19

What is JSHint?

• http://jshinit.com
• A fork from JSLint – initially created to provide more flexible way of using

JSLint (for example, turning off some checks)
• More intuitive UI than JSLint

20

JSHint Command Line Tool

• Install “jshint” plugin to your Node.js installation
> npm install jshint -g

• Then run “jslint” command
> jshint myapp.js

21

JSHint Plugins for text editors and IDEs

• Editors
> Sublime Text, TextMate, VIM, Emacs, Nodepad++

• IDE's
> Visual Studio, Eclipse, IntelliJ, NetBeans

• Build tool
> Maven

22

Lab:Lab:
Exercise 2: JSHintExercise 2: JSHint

4253_javascript_tools.zip4253_javascript_tools.zip

23

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

