
1

 Code QualityCode Quality

Sang ShinSang Shin
www.jPassion.comwww.jPassion.com

““Learn with jPassion!”Learn with jPassion!”

2

Topics
• Characteristics of quality code
• Software defects
• How to improve code quality
• Code quality checking
• Coding principles
• Commenting

3

Why we should careWhy we should care
Code Quality?Code Quality?

4

Something to think about
“Programs must be written for people to read, and only
incidentally for machines to execute”
 - Abelson and Sussman

5

Change in Requirements

6

Cost of Defect
• The earlier the better for dealing with defects

7

Software DefectsSoftware Defects

8

Software Defect Statistics
• Finding, fixing problems in production is 100 times more

expensive than during requirements/design phase
• 40-50% of typical project work is “avoidable rework”
• ~80% of avoidable rework comes from 20% of defects
• ~80% of defects come from 20% of modules
• ~90% of downtime comes from at most 10% of defects
• Peer reviews catch 60% of defects
• Perspective-based reviews catch 35% more defects than non-

directed reviews (Perspective-based reading is a reading
technique that gives each reader a specific viewpoint to use,
such as "user" or "tester.")

• Disciplined personal practices can reduce defects by up to 75%

9

But, still...
• The evidence is overwhelming, but still..
• We never seem to have time to do it, but always seem find

time to “redo” it??

10

What about QA?
• Can't QA take care of quality? Why should developers

care?
> Because QA should not care about quality of design and

implementation
> Instead they should care about “testings that matter”: functionality,

acceptance, performance, usability, etc.
> Give them a better quality software so they can really focus on

“testings that matter”

11

Technical Debt
• “Technical debt” are activities (like refactoring, upgrading a

library, conforming to coding standart, ..) that you've left
undone

• “Technical debt” will hamper your progress if left undone

12

How to ImproveHow to Improve
Code (Software) Code (Software)
Quality?Quality?

13

Ways to Improve Software Quality
• Start early
• Don't compromise
• Schedule time to lower your technical debt
• Make it work; make it right (right away)
• Requires monitoring and changing behavior
• Be willing to help and be helped

14

Individual Effort
• Care about quality of your code
> Good names for variables, methods,
> Short method, smaller classes,

• Keep it simple
• Write tests with high coverage
• Run all your tests before check-in
• Check in frequently
• Ask for feedbacks

15

Team efforts
• Avoid shortcuts
• Talk collective ownership – team should own the code
• Promote positive interaction
• Provide constructive feedback
• Constant code review

16

Broken Window Problem
• Study shows broken windows lead to vandalism
• Code that no one cares for deteriorates quickly
• Fix code that is not elegant or looks broken
• Keep your code always releasable

17

Treat Warnings as Errors
• Don't say “that's only a warning”
• Warnings may have hidden problems
• If unavoidable, suppress (selectively)

18

Strive for Higher Cohesion
• Cohesive code is focused, narrow, and small
> It does one thing and one thing well
> Single responsibility principle

• Higher cohesion leads to “Lower Cyclomatic Complexity”
(Cyclomatic complexity/conditional complexity indicates
complexity of a program by providing measurement on the
number of linearly independent paths through a program's
source code)
> Less expensive to maintain
> Change in low cohesive code will break something else

• Cohesiveness applies to all levels
> method, class, component, and subsystem

19

Code Quality Code Quality
Checking Checking

20

Code Coverage
• How much (%) of your code is covered by test?
• How about paths through your code?
• Is there code that deserve not to be tested?
• Code coverage tools can tell you which and how much code

is covered
> Clover
> Cobertura
> JaCoCo

• Some tools delete code that have no test
> Guantanamo
> Ashcroft

21

Cyclomatic Complexity
• Cyclomatic Complexity Number (CCN)
> Number of distinct paths through code

• Strive for lower CCN
• Tools can show CCN
> PMD
> CheckStyle

22

Code Duplication
• Duplicated code is expensive to maintain
> Duplicated code is common

• Tools that detect code duplication
> PMD

23

Code Analysis
• Analyzing code to find bugs
> Logic errors
> Coding guideline violations
> Synchronization problems
> ..

• Tools
> PMD
> FindBugs
> JLint

24

Coding Principles Coding Principles

25

Coding Principles
• Simplicity
• Clarity
• Brevity
• Humanity

26

Commenting Code Commenting Code

27

Commenting Code
• Comments should say “Why” or “Purpose” not “How”
• Don't comment what a code does - I can read the code
> Keep it DRY

• Don't keep documentation separate from code

28

 Thank you!Thank you!

Check JavaPassion.com Codecamps!Check JavaPassion.com Codecamps!
http://www.javapassion.com/codecampshttp://www.javapassion.com/codecamps

““Learn with Passion!”Learn with Passion!”

28

http://www.javapassion.com/codecamps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

