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Topics
• Characteristics of quality code
• Software defects
• How to improve code quality
• Code quality checking
• Coding principles
• Commenting
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Why we should careWhy we should care
Code Quality?Code Quality?
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Something to think about
“Programs must be written for people to read, and only 
incidentally for machines to execute”
                                               - Abelson and Sussman 
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Change in Requirements
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Cost of Defect
• The earlier the better for dealing with defects
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Software DefectsSoftware Defects
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Software Defect Statistics
• Finding, fixing problems in production is 100 times more 

expensive than during requirements/design phase
• 40-50% of typical project work is “avoidable rework”
• ~80% of avoidable rework comes from 20% of defects
• ~80% of defects come from 20% of modules
• ~90% of downtime comes from at most 10% of defects
• Peer reviews catch 60% of defects
• Perspective-based reviews catch 35% more defects than non-

directed reviews (Perspective-based reading is a reading 
technique that gives each reader a specific viewpoint to use, 
such as "user" or "tester.")

• Disciplined personal practices can reduce defects by up to 75%
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But, still...
• The evidence is overwhelming, but still..
• We never seem to have time to do it, but always seem find 

time to “redo” it??
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What about QA?
• Can't QA take care of quality? Why should developers 

care?
> Because QA should not care about quality of design and 

implementation
> Instead they should care about “testings that matter”: functionality, 

acceptance, performance, usability, etc.
> Give them a better quality software so they can really focus on 

“testings that matter”
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Technical Debt 
• “Technical debt” are activities (like refactoring, upgrading a 

library, conforming to coding standart, ..) that you've left 
undone

• “Technical debt” will hamper your progress if left undone 
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How to ImproveHow to Improve
Code (Software) Code (Software) 
Quality?Quality?
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Ways to Improve Software Quality
• Start early
• Don't compromise
• Schedule time to lower your technical debt
• Make it work; make it right (right away)
• Requires monitoring and changing behavior
• Be willing to help and be helped
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Individual Effort
• Care about quality of your code
> Good names for variables, methods,
> Short method, smaller classes, 

• Keep it simple
• Write tests with high coverage
• Run all your tests before check-in
• Check in frequently
• Ask for feedbacks
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Team efforts
• Avoid shortcuts
• Talk collective ownership – team should own the code
• Promote positive interaction
• Provide constructive feedback
• Constant code review
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Broken Window Problem
• Study shows broken windows lead to vandalism
• Code that no one cares for deteriorates quickly
• Fix code that is not elegant or looks broken
• Keep your code always releasable
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Treat Warnings as Errors
• Don't say “that's only a warning”
• Warnings may have hidden problems
• If unavoidable, suppress (selectively)
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Strive for Higher Cohesion
• Cohesive code is focused, narrow, and small
> It does one thing and one thing well
> Single responsibility principle

• Higher cohesion leads to “Lower Cyclomatic Complexity” 
(Cyclomatic complexity/conditional complexity indicates 
complexity of a program by providing measurement on the 
number of linearly independent paths through a program's 
source code)
> Less expensive to maintain
> Change in low cohesive code will break something else

• Cohesiveness applies to all levels
> method, class, component, and subsystem 
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Code Quality Code Quality 
Checking Checking 
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Code Coverage
• How much (%) of your code is covered by test?
• How about paths through your code?
• Is there code that deserve not to be tested?
• Code coverage tools can tell you which and how much code 

is covered
> Clover
> Cobertura
> JaCoCo

• Some tools delete code that have no test
> Guantanamo
> Ashcroft
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Cyclomatic Complexity
• Cyclomatic Complexity Number (CCN)
> Number of distinct paths through code

• Strive for lower CCN
• Tools can show CCN
> PMD
> CheckStyle 
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Code Duplication
• Duplicated code is expensive to maintain
> Duplicated code is common

• Tools that detect code duplication
> PMD



23

Code Analysis
• Analyzing code to find bugs
> Logic errors
> Coding guideline violations
> Synchronization problems
> ..

• Tools
> PMD
> FindBugs
> JLint
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Coding Principles Coding Principles 
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Coding Principles
• Simplicity
• Clarity
• Brevity
• Humanity
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Commenting Code Commenting Code 
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Commenting Code
• Comments should say “Why” or “Purpose” not “How”
• Don't comment what a code does - I can read the code 
> Keep it DRY

• Don't keep documentation separate from code
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                  Thank you!Thank you!

Check JavaPassion.com Codecamps!Check JavaPassion.com Codecamps!
http://www.javapassion.com/codecampshttp://www.javapassion.com/codecamps

““Learn with Passion!”Learn with Passion!”
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