SAlgRSIn
Jr) ISSIONFCOM

“Laln) Vi) Pasglog)

IN

IJij
OINIVIATH=

Topics

» Basic concepts
> Heap dump
> Shallow vs. Retained heap
> Dominator tree
> GC (Garbage Collection) Roots
> Incoming & outgoing references
> Accumulation point

* How to detect memory leak
» Class loader memory leak example

Heapaump

What is a Heap Dump?

* A heap dump is a snapshot of the memory of a Java process at
a certain moment of time

* Heap dump format
> HPROF binary format (most common)

> |BM system dumps (after pre-processing them)
> |BM portable heap dumps (PHD)

» Usually a full GC is triggered before the heap dump is written so
it contains information about the remaining objects

What Does a HeapDump Contain?

» All Objects
> Class, field, primitive values and references

* All Classes
> Classloader, name, super class, static fields

* Thread stacks and local variables

> The call-stacks of threads at the moment of the snapshot, and per-
frame information about local objects

» Garbage Collection(GC) roots

A Heap Dump Does NOT Tell You..

Where an object was allocated
When an object was created
How many objects were garbage collected

It is indeed just a snapshot

A Heap Dump Can Help You

* Analyze the reason for an OutOfMemoryError
* Analyze the memory footprint of an application

* Debug non-memory related problems too
> Why an application is non-responsive? (Through threads analysis)

How to Get a Heap Dump

* You can trigger a heap dump (on-demand heap dumping)

> Within a tool (jconsole, Eclipse Memory Analyzer, NetBeans,
Eclipse, JMC, etc)

> jmap -dump:format=Db,file=<filename.hprof> <pid>
* Application started with following JVM option creates a Heap
dump when OutOfMemoryError occurs
> -XX:+HeapDumpOnOutOfMemoryError
> There is no negative performance impact on the VM

» Application started with following JVM option creates a Heap
dump when CTRL+BREAK is pressed

> -XX:+HeapDumpOnCitriBreak

How to Get a “Good” Heap Dump
» When memory is exhausted, the leak will occupy the most of the
heap space

» Ensure big enough heap space, this will make the leak easier to
find

> The memory leak pattern looks move obvious

Exercise
517

eapdump
ip

10

Shallowkeap
VS.
Retained FHeap

Shallow Heap vs. Retained Heap

» Shallow heap is the memory consumed by one object
> |ts size in the heap

> An object needs 32 or 64 bits (depending on the OS architecture)
per reference, 4 bytes per Integer, 8 bytes per Long, etc.

> Depending on the heap dump format, the size may be adjusted
(e.g. aligned to 8, etc...) to model better the real consumption of
the VM

» Retained set of X is the set of objects which would be removed
by GC when X'is GC'ed

> Retained heap of X is the sum of shallow sizes of all objects in the
retained set of X, i.e. memory kept alive by X

> Amount of heap memory that will be freed when X is garbage
collected

12

Shallow Heap vs. Retained Heap

s Shallow heap | | Retained heap -7
lz AR SV I
I E% default_report org.eclipse.m.. | Il Histogram | %gdom}\\;or tree|T:a path2ac [5\ /c/tlon of "ArrayLi... IIII Histogram &2 L
| Class Name Objects Shallow Heap Retained lﬁeap I~

I <Regex> <MNumeric> <MNumeric:> <MNumeric>

@ char[] 80,219 2,608,320 == 2,608,320

@ java.lang.String 80,263 1,926,312 == 4,496,984

@ memoryleak_simple.Person 80,045 1,280,720 == 5762456

@ java.lang.Object[] 304 365,088 »= 6,127,824

@ byte(] 7 24,944 == 24,944

@ java.lang.Class 321 3,320 == 72,200

@ java.lang.String[] 49 1936 == 4,036 L

@ java.util. HashMap$Entry[] 20 1,664 == 3,344 T

@ java.util. Hashtable$Entry 58 1,392 == 8520

@ int[] 3 1,152 ==1,152

@ java.util. HashMap 18 720 >= 3,888

@ java.util. Hashtable$Entry[] 7 680 == 9,200

@ java.net. URL 12 672 >= 2,648

@ java.util.Locale 19 608 == 2,024

@ short[] 1 528 >= 528

@ java.util.concurrent.Concurr... 16 512 == 1,776 Tl

@ java.util LinkedHashMap$E... 15 480 == 2496

@ java.util.concurrent.Concurr... 19 456 »>= 4356

@ java.util.concurrent.Concurr... 16 416 == 872 57

39Mof44M | |
e B

Dominatoriree

What is and Why Dominator Tree?

A dominator tree is built out of the object graph.

» The transformation of the “Object reference graph” into a
“Dominator tree” aIIows you to easily identify the biggest chunks
of “retained memory” and the keep-alive dependencies among
objects.

Object
reference
graph

15

Objects in Dominator Tree

- Each object is the immediate
dominator of its children, so
dependencies between the
objects are easily identified.

* An object x dominates an
object y if every path in the
object graph from the start
(or the root) node to y must
go through x

« “C” is immediate dominator of
“D”, “E”, and “H”

° “C” iS dominator Of “D”’ “E”,
“H”, “F”’ “G”

Dominator Tree & Retained Set & Heap

* The objects belonging to the
sub-tree of x (i.e. the objects
dominated by x) represent
the retained set of x

« If“C" is GC'ed, the all the
retained heap space of it will
be also GC'ed

* The retained heap space of
“C” equals the collection of
all shallow heap spaces of its
qudren _ “D”, “E”, “H”’ “F”,

N

G (Ganbage
Collection) Roots

What is & Why Garbage Collection Roots?

A Garbage Collection root (GC root) is an object that is
accessible from outside the heap

> They are root owner (root dominator) of other objects in the heap
» The Find Nearest GC Root feature can help you track down

memory leaks by showing the owner chain of the references
that prevents an object from being garbage collected.

 Example scenarios where an object is a GC root:
> Thread — A started, but not stopped, thread

> System class - Class loaded by bootstrap/system class loader. For
example, everything from the rt.jar like java.util.*

> ...

19

Path to GC Root

File Edit Window Help
iﬁ |i|“| iii] =&
i BB~ FrE A~
E% default_report org.eclipse.mat.api:suspects| Il Histogram ['%g dominator_tree %
Class Name Shallo... Retained Heap Percentage i
3 <Regex= <Nume... <MNumeric> <MNumeric=
a java.lang.Thr 79e0 main Thread 104 6,115,888 98.22%
T& s 9821% |
» O java.lang.ThreadlLocal$Thread List objects ’ 0.00%
» O java.lang.String @ Ox27ffffeld Show objects by class ’ ALS

v [char[4] @ 0x28039b68 main
p O java.security. AccessControlCo
» O java.lang.Object @ 0x28039bk
Z Total: 6 entries
b &l class java.lang.System @ Ox2d 30
v [0 char[8192] @ 0x28003e88 8004°
b del class Java.nio.charset.Charset @ (
» [sun.nio.cs.StreamEncoder @ 0x2¢

E2 < Path To GC Roots

%= Merge Shortest Paths to GC Roots
lava Basics

Java Collections

Leak Identification

Immediate Dominators

Show Retained Set

Copy

i

2

3

-

-

exclude weak refe
exclude soft refer:
exclude phantom
exclude weak/sofl
exclude phantomy

exclude phantomy
exclude all phantc

(8 sun.misc.Llauncher$AppClassload € Search Queries.. exclude custom fir
b del class java.io File @ 0x2d30cafl0 5] E Calculate Minimum Retained Size (quick approx.) 0.05%

b (o char[1340] @ 0x2800c390 C\Jav B Calculate Precise Retained Size 0.04%,

b &l class java.util.Locale @ Ox2d30f7 Tl » 0.04%

b el class java.lang.ClassLoader @ Oxzosueyoo-systenTomass 52 397 0.03%

» &l class sun.nio.cs.StandardCharsets @ 0x2d30dd50 System Class 152 1512 0.02%

b &l class java.lang.CharacterDatalatinl @ Ox2d30fc70 System Class 16 1,072 0.02%

» & class sun.misc.Metalndex @ 0x2d30f550 System Class 8 976 0.02% -

Find paths to garbage..from a single object. 38M of 44M m

e B

20

OtherMisc: Concepts

Incoming & Outgoing References

» QOutgoing references
> Show what objects the current object is making references to

* Incoming references

> Shows what objects are making references to the current object
> Starts from GC Root

22

Incoming References

aEdipse Memory An
File Edit Window Help

i ZEw E~&~ Q| SrE~ea~| &

£ default_report org.eclipse.m...| Il Histogram | Ha dominator_tree|7:a path2gc [selection of "ArrayLi...| Il Histogram 2 L

Class Name Objects Shallow Heap Retained Heap il
G& <Regex> <MNumeric> <MNumeric= <Mumeric=
@ charl] 80,219 2,608,320 == 2,608,320
G_iE‘_@,Jﬁ.D.ﬂ-S’LLi.Dﬂ__._____ 80,263 1,926,312 == 4,496,984
memoryleak_simple.Per n_y_-ennis 1280720 ~— 5 7R2 454 |
- List objects v [4 with i rences

@ java.lang.Objectl]

@ byte[]

@ javalang.Class

@ java.lang.String[]

@ java.util. HashMap$Entry[]
@ java.util. Hashtable$Entry
@int[]

@ java.util. HashMap

Show objects by class

%= Merge Shortest Paths to GC Roots

Java Basics
Java Collections
Leak Identification

. Immediate Dominators

Show Retained Set

-

with incoming reference:

111

@ java.util Hashtable$Entry[| -, Copy . "
6 javanetURL Search Queries...

@ java.utilLocale E Calculate Minimum Retained Size (quick approx.)

@ short[] E Calculate Precise Retained Size

@ java.util.concurrent.Concu Columns... 3
@ java.util.LinkedHashMap$E... 15 480 == 2,496
@ java.util.concurrent.Concurr... 19 456 >= 456
@ java.util.concurrent.Concurr... >= 8§72

List the selected objects.
N

16 416

38MofadM | [T

23

ccumulation Point

» Shows significant drop in the retained size — good candidate
where memory leak starts to occur

Report Details

Shortest Paths To the Accumulation Poinl «

The chain of objects and

Class Name SiElom metniond references which keep
[jzvalang.obiect] 7481 @ G ali 53,407,248 the SUSpeCt alive
T queue java.util OrioriteQueus f 023270308] 53,487,277

T events org.edipse.mat.dems leak LeakingQuese @ Or3aT0%a8 16 53,487,288

B eventueue org.eclipse.mat.demn.leak.leakQueneProcessor @ Nx3aTnido

140.560

LeakDueus Processor Thread Thread
TEllq class ora.eclinse mat dermo Jeak Anothe rClassReferenciaTheOueus @ 0x7216d0 ¥ & &
 Total: 2 entries

Accumulated Dbjects ~ A significant drop in the
Class name Shallow Heap Retained Heap Percentaqge retalnecj sizes Shows the
| Jora aclipss. mat.demo.leak.laskingQuaue @ 0x3a703a8 i& S2.487.253 B0,18% accumUIatlon pOIHt
i a bl PricrtyQueis @ De3sT030E 4 55487272 BU,15% I
[ijjizva.lang. Object 765] @ dxd96<Eal 3.088 53.467.248 anua%{
[ora.eclipse mat.demo.deak Lo sk EventTmpl 16 74,000 0,11% ™
[sorg.sclpse mat.demo.eak AnotherleakEventImpl & 0x3adafal is 4,020 0,11%
Lorqachpsa.mat.damndeal LeakEventTropl @ Ox2adadsf 1s w4020 U,11%
| jora.sclpse mat dema Jeal AnotherleskEventlopl @ Ox2adadsl 16 #4080 0,11% >' Accumulated
[org.eclpse.mat. demo Jeak LeakBventtrpl @ DxZadadbs 16 74,050 0,11% ObjeCtS
| org.eclipse.mat.dermuo.Jeak AnotherleakEventImpl @ OxZadaéed 16 74,000 0,11%
"grg.sl::l:gsa.mat.:laﬁu.leal-c LeakEventlmpl @ Ox2aca?0s 16 F4.020 0,11%
Jrra achnca et damen lzale dnotherl aabBuendTmnl & Av2asaTi0 1h w4 mEN nate, LA

24

HowtorAnalyzea
Heapdumpiz(Howito
findiViemoR/teak)

Schemes of Analyzing Heap Dump

* Find the biggest objects
> (Good starting point

* Analyze why they are kept in memory
> Someone has a reference to the objects
> Incoming references, GC Root

* Analyze what makes them big
> Check retained heap
> Accumulation point

Memory Analyzer performs the above and suggests “Problem
Suspect’

26

One Big Object, Problem Suspect

Report Overviewy \

One big object: J

memory leak suspect

(&) 51 ME

/Any up-to-date architectu re\
loads components with

B enemeas | SEPArate class loaders, be

WL et it OSGi or JEE application

Servers.
) 125 HE Extensible to display
@eaningful names. j
Tolak 63,5 MB

@ Problem Suspect 1

i Ora instance of "org.ecipse.mat.demo.leak.LeakingQuaua*]icadsc by “org.aclipse.mat.demao Jeak" |ocoupies !

i 50487280 (AN, 1R%) hytes. The memory 15 accumulated in one neranee o : . i BETC]

; “geystam class lnader =", Search by keywords.
Keywords identify if problem is
jawa lang Chjest[]
ong. eclipsz.mat.deme. leak LeakingDueue known
org. 2clipse mat.dama.lesk .
g;m;?:'g;:gﬁg:ﬁr for "org. eclipss mat.demo lesk" CIESSIﬁCEtIOH fOf lFDI..I ble

| petae s ' ticket system: less ping-

l pong of trouble tickets.

27

Chain of Incoming References,
Accumulation Point

Report Details

Shortest Paths To the Accumulation Point ~

The chain of objects and

Class Name Fiplow. etaincd references which keep
[0l java lang.Obiec] 7661 @ OxdS6asa 3.066 53.467,2406 the SUSDEGt alive
T gquewe lava bl Priorteducus § 053a703bE | 534087 272

'|: ewents org.eclipse_mat.demo leak LeakingQueve @ Ox%aT0%a8 16 53 467 246

B eventQuene nrg.eclipse.mat.demn.leak.l pakQueneProcessar @ Nx3a7F0ddn
LeakDuaus Processor Thread Thread

"£llq class org.eclinse.mat.deme Jeak AnotherclassheferenciaTheCueye & DxTa216d0 » 2 &
Z Total: 2 entries

140.560

accumulated Objects ~ A significant drop in the
Class name Shallow Heap Retained Heap | Percentage reta'ne‘d sizes Shows the
| ".:lrg aclpsa.mat.demaolaak.leskngQueus @ Ox3a703a8 1& 93487 258 0,15% accumUIatlon p0|nt
CLisva il Priority Queue @ 0e3z7030E 4 53,487,272 B0,18%
[iLizvadang.objedtl 7ES] @ 0x495=5a0 3,088 53,467,248 ED,IB"L:
16 74.080 0,11% [
15 74,030 0,11%
A i Adamn.de = s : 1& 4,020 U,11%
[jorn.eclipse mat.demn deak AnotherleakEventlmpl & dx2adasan 18 74.080 0,11% Accumulated
[Morg.aclipse matdemoJeak LeakEventlnmpl @ 0x2adadhs 16 74.020 0,11% Dbjects
| gorgsclpse mat demodeak AnotherleakEventlmpl @ 0x2adagel 14 7<.050 0,11%
| Jorg.sclipse mat.demaoJdeak.leakEventimpl @ OxZada?0s 14 74,080 0,11%
Nerr arlines mat dama leal dnntherl aabPuanHmnl M NvFadaT3n 16 74 nEn nate,

28

Exercis
511

Leaks

29

Classiloader
Viemony LLeak

ClasslLoader and Classes it Loaded

* Every object has a reference to its class object
» Every class object has a reference to its classloader

* Every classloader in turn has a reference to each of the classes
it has loaded, each of which might hold some static fields
defined in the class: (This is the killer!!)

ClassLoader

Class1.class Class2.class Class3.class

Static Static
Fields Fields

31

Why ClassLoader Leak is so Common?

- To leak a classloader, it's enough to leave a reference to any
object, created from a class, loaded by that classloader

> Even if that object seems completely harmless (e.g. doesn'’t have
a single field), it will still hold on to its classloader

32

Why ClassLoader Leak is so Bad?

* |f a classloader is leaked, then it will hold on to all its classes
and all their static fields

> Even if your application doesn’t have any large static caches, it
doesn’t mean that the framework you use doesn'’t hold them for
you (e.g. Log4J is a common culprit)

* Major cause of OutOfMemoryException

33

ClassLoader Leak Example

 Each Leak object and it class object are leaking. They are holding on
to their classloaders

» The classloaders are holding onto the Example class object (including
the static fields) they have loaded

Example.class Example.class

ExampleFactory$1 ExampleFactory$1 ExampleFactory$1

34

Exercise
511

ory leak

35

11

1./

0]
J

o\~
=

—

-

—
(S5
-
e)
&)

.
1
e
e)
=1
()

-PJ"A
A,

=

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

