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Topics

• Join
• Table relationship
> Primary key and foreign key
> Types of relationship
> Referential integrity
> Automatic delete and update

• Union
• Subquery
• View
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What is Join?

• A SQL JOIN clause combines records from two or more 
tables to produce a “result set”
> A JOIN is a means for combining fields from two tables by 

using values common to each
> Specified in WHERE clause

• The joined tables are typically related with foreign keys
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Types of Join

• Cross join 
• Inner join
• Outer join
• Self join



Join:Join:
Cross JoinCross Join

 



7

Cross Join

• Matches each row from one table to every row from 
another table
> Cartesian Product
> Very costly (in terms of CPU time)
> May take a while to return a large result set - Suppose tables 

A and B each has 1000 records, the Cartesian product will 
result in 1000,000 in the result set

> Rarely used in production environment

• Default
> If you do not specify how to join rows from different tables, 

the database server assumes you want Cross Join
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Cross Join Examples

/* Cross Join Option #1 from “employees” table and “departments” table */
SELECT 'Cross Join', e.ename, e.salary, d.dname
FROM employees AS e, departments AS d;

/* Cross Join Option #2, same as the above*/
SELECT 'Cross Join', e.ename, e.salary, d.dname
FROM employees AS e CROSS JOIN departments AS d;
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Let's support we have test tables..
/* Let's assume we have two tables */

+-------------------+----------------+
| department_id | dname         |
+-------------------+----------------+
|                      1 | Engineering |
|                      2 | Sales           |
|                      3 | Marketing    |
|                      4 | HR               |
+-------------------+----------------+
+----------------+----------------+--------------------+--------------+
| employee_id | enam           | department_id | salary      |
+----------------+----------------+--------------------+---------------+
|                   1 | jack             |                       1 | 3000.00 |
|                   2 | mary           |                        2 | 2500.00 |
|                   3 | nichole        |                        1 | 4000.00 |
|                   4 | angie          |                        2 | 5000.00 |
|                   5 | jones          |                        3 | 5000.00 |
|                   6 | newperson |                  NULL | 5000.00 |
+----------------+----------------+--------------------+------------+
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Cross Join Result Set
+------------+-----------+---------+-------------+
| Cross Join | ename     | salary  | dname       |
+------------+-----------+---------+-------------+
| Cross Join | jack      | 3000.00 | Engineering |
| Cross Join | jack      | 3000.00 | Sales       |
| Cross Join | jack      | 3000.00 | Marketing   |
| Cross Join | jack      | 3000.00 | HR          |
| Cross Join | mary      | 2500.00 | Engineering |
| Cross Join | mary      | 2500.00 | Sales       |
| Cross Join | mary      | 2500.00 | Marketing   |
| Cross Join | mary      | 2500.00 | HR          |
| Cross Join | nichole   | 4000.00 | Engineering |
| Cross Join | nichole   | 4000.00 | Sales       |
| Cross Join | nichole   | 4000.00 | Marketing   |
| Cross Join | nichole   | 4000.00 | HR          |
| Cross Join | angie     | 5000.00 | Engineering |
| Cross Join | angie     | 5000.00 | Sales       |
| Cross Join | angie     | 5000.00 | Marketing   |
| Cross Join | angie     | 5000.00 | HR          |
| Cross Join | jones     | 5000.00 | Engineering |
| Cross Join | jones     | 5000.00 | Sales       |
| Cross Join | jones     | 5000.00 | Marketing   |
| Cross Join | jones     | 5000.00 | HR          |
| Cross Join | newperson | 5000.00 | Engineering |
| Cross Join | newperson | 5000.00 | Sales       |
| Cross Join | newperson | 5000.00 | Marketing   |
| Cross Join | newperson | 5000.00 | HR          |
24 rows in set (0.00 sec)
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Inner Join

• Most common (popular) type of Join
> The most common type of Inner Join is “equi-join” where 

certain fields of the joined tables are equated to each other 
using equality (=) operator

• Require a match in each table
> The match condition is specified with WHERE clause
> Rows that do not match are excluded from the result set 

(Difference from Outer Join)
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Inner Join Examples
/* The following Inner Join statements are equivalent */

/* Inner Join Option #1 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees, departments
WHERE employees.department_id=departments.department_id;

/* Inner Join Option #2 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees
JOIN departments
WHERE employees.department_id=departments.department_id;

/* Inner Join Option #3 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees
INNER JOIN departments
WHERE employees.department_id=departments.department_id;

/* Inner Join Option #4 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees
INNER JOIN departments
ON employees.department_id=departments.department_id;
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Inner Join Result Set
+-------------+-----------+------------+-------------+
| Inner Join | ename   | salary     | dname       |
+-------------+-----------+-----------+-------------+
| Inner Join | jack        | 3000.00 | Engineering |
| Inner Join | nichole   | 4000.00 | Engineering |
| Inner Join | mary      | 2500.00 | Sales           |
| Inner Join | angie     | 5000.00 | Sales          |
| Inner Join | jones     | 5000.00 | Marketing   |
+------------+---------+---------+-------------+
5 rows in set (0.00 sec)
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Outer Join

• All records from one side of the Join are included in the 
result set regardless of whether they match records on 
the other side of the Join
> Difference from Inner Join

• LEFT JOIN or RIGHT JOIN depending which side of 
the Join is “all included”
> LEFT JOIN: All records of the table on the left side of the Join 

will be included
> RIGHT JOIN: All records of the table on the right side of the 

Join will be included
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OUTER LEFT JOIN Example
/* Outer Join could be either LEFT JOIN or RIGHT JOIN */

/* Outer Join #1 - LEFT JOIN */
/* All records of the "employees" table
 * are included in the result set because the "employees" table is
 *  left side of the JOIN */
SELECT 'Outer Join - LEFT JOIN ', employees.ename, employees.salary, departments.dname
FROM employees
LEFT JOIN departments
ON employees.department_id=departments.department_id;
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OUTER LEFT JOIN Result Set
// Notice that all records of employees
// table are included in the result set regardless of the match because
// employees table is the left side of the outer left join.
+-----------------------------+---------------+-----------+----------------+
| Outer Join - LEFT JOIN  | ename        | salary    | dname          |
+-----------------------------+---------------+-----------+----------------+
| Outer Join - LEFT JOIN  | jack             | 3000.00 | Engineering |
| Outer Join - LEFT JOIN  | mary           | 2500.00 | Sales            |
| Outer Join - LEFT JOIN  | nichole        | 4000.00 | Engineering |
| Outer Join - LEFT JOIN  | angie          | 5000.00 | Sales            |
| Outer Join - LEFT JOIN  | jones          | 5000.00 | Marketing     |
| Outer Join - LEFT JOIN  | newperson | 5000.00 | NULL            |
+-----------------------------+---------------+------------+---------------+
6 rows in set (0.00 sec)
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OUTER RIGHT JOIN Examples
/* Outer Join could be either LEFT JOIN or RIGHT JOIN */

/* Outer Join #2 - RIGHT JOIN */
/* All records (actually fields of the records) of the "departments" table
 * are included in the result set because the "departments" table is
 * right side of the JOIN */
SELECT 'Outer Join - RIGHT JOIN', employees.ename, employees.salary, departments.dname
FROM employees
RIGHT JOIN departments
ON employees.department_id=departments.department_id;
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OUTER RIGHT JOIN Result Set
// Notice that all records of departments
// table are included in the result set regardless of the match because
// the departments table is the right side of the outer right join.
+------------------------------+---------------+-----------+----------------+
| Outer Join - RIGHT JOIN | ename        | salary    | dname         |
+------------------------------+---------------+-----------+----------------+
| Outer Join - RIGHT JOIN | jack             | 3000.00 | Engineering |
| Outer Join - RIGHT JOIN | nichole        | 4000.00 | Engineering |
| Outer Join - RIGHT JOIN | mary           | 2500.00 | Sales           |
| Outer Join - RIGHT JOIN | angie          | 5000.00  | Sales          |
| Outer Join - RIGHT JOIN | jones          | 5000.00  | Marketing   |
| Outer Join - RIGHT JOIN | NULL           |    NULL    | HR              |
+-----------------------------+---------------+-----------+----------------+
6 rows in set (0.00 sec)
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Lab:Lab:

Exercise 1: “Joins”Exercise 1: “Joins”
1612_mysql_join.zip1612_mysql_join.zip
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Primary key and Foreign key

• A primary key is a field or combination of fields that 
uniquely identify a record (row) in a table

• A foreign key (sometimes called a referencing key) is a 
key used to link two tables together

• Typically you take the primary key field from one table 
and insert it into the other table where it becomes a 
foreign key 
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Primary key and Foreign key Example
/* Create departments table */
CREATE TABLE departments ( 
    department_id int(11) NOT NULL AUTO_INCREMENT, 
    dname varchar(255) NOT NULL,  
    PRIMARY KEY  (department_id)
) ENGINE=InnoDB;
 
 
/* Create "employees" table with FOREIGN KEY */
 CREATE TABLE employees (  
    employee_id int(11) NOT NULL AUTO_INCREMENT, 
    ename varchar(255) NOT NULL, 
    d_id int(11) NOT NULL,
    salary decimal(7,2) NOT NULL,  
    PRIMARY KEY  (employee_id),
    FOREIGN KEY (d_id) REFERENCES departments (department_id)
) ENGINE=InnoDB;  



Table Relationship:Table Relationship:
Types of relationshipTypes of relationship

 



26

Types of Relationship
• One-to-one (1-1)

• One-to-many (1-n)

• Many-to-many (n-m)
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One-to-One Relationship

• Example: A person has only one primary address 
• “person” table has 1-1 relationship with “primary-

address” table
• The “primary-address” table has a foreign key field 

referring to the primary key field of the “person” table
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One-to-One Relationship Example
/* Create "person" table */
CREATE TABLE person ( 
    person_id INT NOT NULL AUTO_INCREMENT, 
    pname varchar(255) NOT NULL,  
    PRIMARY KEY  (person_id)
) ENGINE=InnoDB;
 
 
/* Create "primary_address" table with FOREIGN KEY */
 CREATE TABLE primary_address (  
    primary_address_id INT NOT NULL, 
    address varchar(255) NOT NULL, 
    p_id INT NOT NULL,
    PRIMARY KEY  (primary_address_id),
    FOREIGN KEY (p_id) REFERENCES person (person_id)
) ENGINE=InnoDB;   
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One-to-One Relationship Example
+-------------+-----------------+
| person_id | pname          |
+-------------+-----------------+
|               1 | Sang Shin     |
|               2 | Casey Jones  |
|               3 | Bull Fighter    |
|               4 | Passion You  |
+-------------+-------------------+

+---------------------------+--------------------------+------+
| primary_address_id | address                 | p_id |
+---------------------------+--------------------------+------+
|                            11 | 11 dreamland       |    1 |
|                            12 | 5 king road           |    2 |
|                            13 | 67 nichole st         |    3 |
|                            14 | 32 Washington st  |    4 |
+-------------------------+----------------------------+------+
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One-to-Many (1-n) Relationship

• Example: A department has many employees and an 
employee belongs to only a single department

• “department” table has 1-n relationship with “employee” 
table

• The “employee” table has a foreign key field referring to 
the primary key field of the “department” table
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One-to-Many Relationship Example
/* Create departments table */
CREATE TABLE departments ( 
    department_id int(11) NOT NULL AUTO_INCREMENT, 
    dname varchar(255) NOT NULL,  
    PRIMARY KEY  (department_id)
) ENGINE=InnoDB;
 
 
/* Create "employees" table with FOREIGN KEY */
 CREATE TABLE employees (  
    employee_id int(11) NOT NULL AUTO_INCREMENT, 
    ename varchar(255) NOT NULL, 
    d_id int(11) NOT NULL,
    salary decimal(7,2) NOT NULL,  
    PRIMARY KEY  (employee_id),
    FOREIGN KEY (d_id) REFERENCES departments (department_id)
) ENGINE=InnoDB;   
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One-to-Many Relationship Example
+-------------------+----------------+
| department_id | dname         |
+-------------------+----------------+
|                       1 | Engineering |
|                       2 | Sales           |
|                       3 | Marketing    |
|                       4 | HR               |
+-------------------+----------------+

+----------------+-----------+------+---------+
| employee_id | ename | d_id | salary  |
+----------------+-----------+------+---------+
|                   1 | jack     |    1 | 3000.00 |
|                   2 | mary    |    2 | 2500.00 |
|                   3 | nichole |    1 | 4000.00 |
|                   4 | angie    |    2 | 5000.00 |
|                   5 | jones    |    3 | 5000.00 |
+-----------------+-----------+------+---------+
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Many-to-Many (n-m) Relationship

• Example: A student takes many courses and each course 
has many students

• “student” and “course” has m-n relationship with each other

• Need a join table (intersection table) called “student-course”
> “student-course” table has foreign key fields to both “student” and 

“course” tables
> “student-course” table's primary key is typically composite of the 

student's and course's primary keys
> “student-course” table can contain other fields of its own such as 

“course registration date”
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Many-to-Many Relationship Example
/* Create student table */
CREATE TABLE student ( 
    student_id INT NOT NULL AUTO_INCREMENT, 
    sname varchar(255) NOT NULL,  
    PRIMARY KEY  (student_id)
) ENGINE=InnoDB;

 
/* Create course table */
CREATE TABLE course ( 
    course_id INT NOT NULL AUTO_INCREMENT, 
    cname varchar(255) NOT NULL,  
    PRIMARY KEY  (course_id)
) ENGINE=InnoDB;
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Many-to-Many Relationship Example

/* Create "student_course" join table with FOREIGN KEY to
 * both student and course tables. */
CREATE TABLE student_course (  
    s_id INT NOT NULL,
    c_id INT NOT NULL, 
    PRIMARY KEY  (s_id, c_id),
    FOREIGN KEY (s_id) REFERENCES student (student_id),
    FOREIGN KEY (c_id) REFERENCES course (course_id)
) ENGINE=InnoDB;      
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Many-to-Many Relationship Example
+------------+----------------------------+
| course_id | cname                        |
+------------+----------------------------+
|           11 | Computer Science 101 |
|           22 | MySQL                          |
|           33 | Java programming       |
+------------+----------------------------+
3 rows in set (0.00 sec)

+--------------+-----------+
| student_id | sname   |
+--------------+-----------+
|                1 | jack       |
|                2 | mary      |
|                3 | nichole   |
|                4 | mike      |
+--------------+-----------+
4 rows in set (0.00 sec)
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Many-to-Many Relationship Example
+------+------+
 s_id | c_id |
+------+------+
|     1 |   11 |
|     1 |   22 |
|     3 |   22 |
|     4 |   22 |
+------+------+
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Lab:Lab:

Exercise 2: Foreign KeysExercise 2: Foreign Keys
1612_mysql_join.zip1612_mysql_join.zip
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What is Referential Integrity?

• FOREIGN KEY constraint specifies that the data in a 
foreign key must match the data in the primary key of 
the linked table

• The “d_id” foreign key field of the “employees” table 
must contain a valid department number
> You cannot add a new employee which has a d_id value that 

is not existent in department table

• The departments table cannot be dropped as long as 
there is a employee whose foreign key refers to it
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Referential Integrity Example
+-------------------+------------------+
| department_id | dname         |
+-------------------+------------------+
|                      1 | Engineering |
|                      2 | Sales            |
|                      3 | Marketing     |
|                      4 | HR                |
+-------------------+-------------------+
+----------------+----------+------+-----------+
| employee_id | ename | d_id | salary  |
+----------------+----------+------+-----------+
|                   1 | jack      |    1 | 3000.00 |
|                   2 | mary     |    2 | 2500.00 |
|                   3 | nichole  |    1 | 4000.00 |
|                   4 | angie    |    2 | 5000.00 |
|                   5 | jones    |    3 | 5000.00 |
+----------------+-----------+------+------------+
mysql> INSERT INTO employees(employee_id, ename, salary, d_id)
    -> VALUES (6, 'newperson', '5000.00', 10);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails (`mydb`.`employees`, 
CONSTRAINT `employees_ibfk_1` FOREIGN KEY (`d_id`) REFERENCES `departments` (`department_id`))
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Lab:Lab:

Exercise 3: Referential IntegrityExercise 3: Referential Integrity
1612_mysql_join.zip1612_mysql_join.zip



Table Relationship:Table Relationship:
Automatic DeleteAutomatic Delete
and Updateand Update
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Automatic Delete and Update

• The ON DELETE CASCADE or ON UPDATE 
CASCADE clause to the FOREIGN KEY .. 
REFERENCES modifier enabled automatic deletion or 
update of the records
/* Create "employees" table with FOREIGN KEY */
CREATE TABLE employees ( 
    employee_id int(11) NOT NULL AUTO_INCREMENT,
    ename varchar(255) NOT NULL,
    d_id int(11) NOT NULL,
    salary decimal(7,2) NOT NULL, 
    PRIMARY KEY  (employee_id),
    FOREIGN KEY (d_id) REFERENCES departments (department_id)
    ON DELETE CASCADE
    ON UPDATE CASCADE
) ENGINE=InnoDB;   



45

Automatic Delete Example
mysql> DELETE FROM departments WHERE department_id = 2;
Query OK, 1 row affected (0.05 sec)

mysql> SELECT * FROM departments;
+---------------+-------------+
| department_id | dname        |
+---------------+-------------+
|             3 | Marketing   |
|             4 | HR          |
|            11 | Engineering |
+---------------+-------------+
3 rows in set (0.00 sec)

// Observe that the employee record whose foreign key is 2 are automatically deleted.
mysql> SELECT * FROM employees;
+-------------+---------+------+---------+
| employee_id | ename    | d_id | salary  |
+-------------+---------+------+---------+
|           1 | jack    |   11 | 3000.00 |
|           3 | nichole |   11 | 4000.00 |
|           5 | jones   |    3 | 5000.00 |
+-------------+---------+------+---------+
3 rows in set (0.00 sec)
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Lab:Lab:
Exercise 4: Automatic Delete/UpdateExercise 4: Automatic Delete/Update

1612_mysql_join.zip1612_mysql_join.zip
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Union

• UNION is used to combine the result from multiple 
SELECT statements into a single result set
/* Combine the output of multiple SELECT */
SELECT ename, salary FROM HighSalaryEmployees
UNION
SELECT ename, salary FROM LowSalaryEmployees;
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Lab:Lab:
Exercise 5: UnionExercise 5: Union

1612_mysql_join.zip1612_mysql_join.zip
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What is Subquery?

• A subquery is a SELECT statement within another 
statement except that its result set always returns a 
single column containing one or more values

• A subquery can be used anywhere an expression can 
be used

• A subquery must always appear within parentheses
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Why Subquery?

• They allow queries that are structured so that it is 
possible to isolate each part of a statement.

• They provide alternative ways to perform operations 
that would otherwise require complex joins and unions.

• They are, in general, more readable than complex joins 
or unions. 
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Sunquery Example #1
SELECT ename, salary FROM employees
WHERE salary >
     (SELECT AVG(salary) FROM employees);

+-----------+---------+
| ename   | salary  |
+-----------+---------+
| nichole  | 4000.00 |
| angie    | 5000.00 |
| jones    | 5000.00 |
+-----------+---------+
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Sunquery Example #2
SELECT ename, salary FROM employees
WHERE d_id =
     (SELECT department_id FROM departments
      WHERE dname = 'Sales');

+-------+---------+
| name  | salary  |
+-------+---------+
| mary  | 2500.00 |
| angie | 5000.00 |
+-------+---------+
2 rows in set (0.00 sec)
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Lab:Lab:
Exercise 6: SubqueryExercise 6: Subquery
1612_mysql_join.zip1612_mysql_join.zip
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What is a View?

• A view is a virtual table which is composed of result set 
of a SELECT query.  

• Because view is like the table which consists of row 
and column so you can retrieve and update data on it in 
the same way with table. 

• When the tables which are the source data of a view 
changes; the data in the view change also
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Why View?

• When a complex query is called repeatedly, it would be 
beneficial to create a virtual table (view) 
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View Example
CREATE VIEW v_HighSalaryEmployees AS
  SELECT ename, salary FROM employees
  WHERE salary > 4000;

CREATE VIEW v_LowSalaryEmployees AS
  SELECT ename, salary FROM employees
  WHERE salary < 3000;

mysql> SELECT * from v_HighSalaryEmployees;
+-------+---------+
| ename  | salary  |
+-------+---------+
| angie | 5000.00 |
| jones | 5000.00 |
+-------+---------+
2 rows in set (0.00 sec)
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Lab:Lab:
Exercise 7: ViewExercise 7: View

1612_mysql_join.zip1612_mysql_join.zip
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