
1

Join/Subquery/ViewJoin/Subquery/View

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

1

2

Topics

• Join
• Table relationship
> Primary key and foreign key
> Types of relationship
> Referential integrity
> Automatic delete and update

• Union
• Subquery
• View

JoinJoin

4

What is Join?

• A SQL JOIN clause combines records from two or more
tables to produce a “result set”
> A JOIN is a means for combining fields from two tables by

using values common to each
> Specified in WHERE clause

• The joined tables are typically related with foreign keys

5

Types of Join

• Cross join
• Inner join
• Outer join
• Self join

Join:Join:
Cross JoinCross Join

7

Cross Join

• Matches each row from one table to every row from
another table
> Cartesian Product
> Very costly (in terms of CPU time)
> May take a while to return a large result set - Suppose tables

A and B each has 1000 records, the Cartesian product will
result in 1000,000 in the result set

> Rarely used in production environment

• Default
> If you do not specify how to join rows from different tables,

the database server assumes you want Cross Join

8

Cross Join Examples

/* Cross Join Option #1 from “employees” table and “departments” table */
SELECT 'Cross Join', e.ename, e.salary, d.dname
FROM employees AS e, departments AS d;

/* Cross Join Option #2, same as the above*/
SELECT 'Cross Join', e.ename, e.salary, d.dname
FROM employees AS e CROSS JOIN departments AS d;

9

Let's support we have test tables..
/* Let's assume we have two tables */

+-------------------+----------------+
| department_id | dname |
+-------------------+----------------+
1	Engineering
2	Sales
3	Marketing
4	HR
+-------------------+----------------+	
+----------------+----------------+--------------------+--------------+	
employee_id	enam
+----------------+----------------+--------------------+---------------+	
1	jack
2	mary
3	nichole
4	angie
5	jones
6	newperson
+----------------+----------------+--------------------+------------+

10

Cross Join Result Set
+------------+-----------+---------+-------------+
| Cross Join | ename | salary | dname |
+------------+-----------+---------+-------------+
Cross Join	jack	3000.00	Engineering
Cross Join	jack	3000.00	Sales
Cross Join	jack	3000.00	Marketing
Cross Join	jack	3000.00	HR
Cross Join	mary	2500.00	Engineering
Cross Join	mary	2500.00	Sales
Cross Join	mary	2500.00	Marketing
Cross Join	mary	2500.00	HR
Cross Join	nichole	4000.00	Engineering
Cross Join	nichole	4000.00	Sales
Cross Join	nichole	4000.00	Marketing
Cross Join	nichole	4000.00	HR
Cross Join	angie	5000.00	Engineering
Cross Join	angie	5000.00	Sales
Cross Join	angie	5000.00	Marketing
Cross Join	angie	5000.00	HR
Cross Join	jones	5000.00	Engineering
Cross Join	jones	5000.00	Sales
Cross Join	jones	5000.00	Marketing
Cross Join	jones	5000.00	HR
Cross Join	newperson	5000.00	Engineering
Cross Join	newperson	5000.00	Sales
Cross Join	newperson	5000.00	Marketing
Cross Join	newperson	5000.00	HR
24 rows in set (0.00 sec)

Join:Join:
Inner JoinInner Join

12

Inner Join

• Most common (popular) type of Join
> The most common type of Inner Join is “equi-join” where

certain fields of the joined tables are equated to each other
using equality (=) operator

• Require a match in each table
> The match condition is specified with WHERE clause
> Rows that do not match are excluded from the result set

(Difference from Outer Join)

13

Inner Join Examples
/* The following Inner Join statements are equivalent */

/* Inner Join Option #1 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees, departments
WHERE employees.department_id=departments.department_id;

/* Inner Join Option #2 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees
JOIN departments
WHERE employees.department_id=departments.department_id;

/* Inner Join Option #3 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees
INNER JOIN departments
WHERE employees.department_id=departments.department_id;

/* Inner Join Option #4 */
SELECT 'Inner Join', employees.ename, employees.salary, departments.dname
FROM employees
INNER JOIN departments
ON employees.department_id=departments.department_id;

14

Inner Join Result Set
+-------------+-----------+------------+-------------+
| Inner Join | ename | salary | dname |
+-------------+-----------+-----------+-------------+
Inner Join	jack	3000.00	Engineering
Inner Join	nichole	4000.00	Engineering
Inner Join	mary	2500.00	Sales
Inner Join	angie	5000.00	Sales
Inner Join	jones	5000.00	Marketing
+------------+---------+---------+-------------+
5 rows in set (0.00 sec)

Join:Join:
Outer JoinOuter Join

16

Outer Join

• All records from one side of the Join are included in the
result set regardless of whether they match records on
the other side of the Join
> Difference from Inner Join

• LEFT JOIN or RIGHT JOIN depending which side of
the Join is “all included”
> LEFT JOIN: All records of the table on the left side of the Join

will be included
> RIGHT JOIN: All records of the table on the right side of the

Join will be included

17

OUTER LEFT JOIN Example
/* Outer Join could be either LEFT JOIN or RIGHT JOIN */

/* Outer Join #1 - LEFT JOIN */
/* All records of the "employees" table
 * are included in the result set because the "employees" table is
 * left side of the JOIN */
SELECT 'Outer Join - LEFT JOIN ', employees.ename, employees.salary, departments.dname
FROM employees
LEFT JOIN departments
ON employees.department_id=departments.department_id;

18

OUTER LEFT JOIN Result Set
// Notice that all records of employees
// table are included in the result set regardless of the match because
// employees table is the left side of the outer left join.
+-----------------------------+---------------+-----------+----------------+
| Outer Join - LEFT JOIN | ename | salary | dname |
+-----------------------------+---------------+-----------+----------------+
Outer Join - LEFT JOIN	jack	3000.00	Engineering
Outer Join - LEFT JOIN	mary	2500.00	Sales
Outer Join - LEFT JOIN	nichole	4000.00	Engineering
Outer Join - LEFT JOIN	angie	5000.00	Sales
Outer Join - LEFT JOIN	jones	5000.00	Marketing
Outer Join - LEFT JOIN	newperson	5000.00	NULL
+-----------------------------+---------------+------------+---------------+
6 rows in set (0.00 sec)

19

OUTER RIGHT JOIN Examples
/* Outer Join could be either LEFT JOIN or RIGHT JOIN */

/* Outer Join #2 - RIGHT JOIN */
/* All records (actually fields of the records) of the "departments" table
 * are included in the result set because the "departments" table is
 * right side of the JOIN */
SELECT 'Outer Join - RIGHT JOIN', employees.ename, employees.salary, departments.dname
FROM employees
RIGHT JOIN departments
ON employees.department_id=departments.department_id;

20

OUTER RIGHT JOIN Result Set
// Notice that all records of departments
// table are included in the result set regardless of the match because
// the departments table is the right side of the outer right join.
+------------------------------+---------------+-----------+----------------+
| Outer Join - RIGHT JOIN | ename | salary | dname |
+------------------------------+---------------+-----------+----------------+
Outer Join - RIGHT JOIN	jack	3000.00	Engineering
Outer Join - RIGHT JOIN	nichole	4000.00	Engineering
Outer Join - RIGHT JOIN	mary	2500.00	Sales
Outer Join - RIGHT JOIN	angie	5000.00	Sales
Outer Join - RIGHT JOIN	jones	5000.00	Marketing
Outer Join - RIGHT JOIN	NULL	NULL	HR
+-----------------------------+---------------+-----------+----------------+
6 rows in set (0.00 sec)

21

Lab:Lab:

Exercise 1: “Joins”Exercise 1: “Joins”
1612_mysql_join.zip1612_mysql_join.zip

Table Relationship:Table Relationship:
Primary key andPrimary key and
Foreign keyForeign key

23

Primary key and Foreign key

• A primary key is a field or combination of fields that
uniquely identify a record (row) in a table

• A foreign key (sometimes called a referencing key) is a
key used to link two tables together

• Typically you take the primary key field from one table
and insert it into the other table where it becomes a
foreign key

24

Primary key and Foreign key Example
/* Create departments table */
CREATE TABLE departments (
 department_id int(11) NOT NULL AUTO_INCREMENT,
 dname varchar(255) NOT NULL,
 PRIMARY KEY (department_id)
) ENGINE=InnoDB;

/* Create "employees" table with FOREIGN KEY */
 CREATE TABLE employees (
 employee_id int(11) NOT NULL AUTO_INCREMENT,
 ename varchar(255) NOT NULL,
 d_id int(11) NOT NULL,
 salary decimal(7,2) NOT NULL,
 PRIMARY KEY (employee_id),
 FOREIGN KEY (d_id) REFERENCES departments (department_id)
) ENGINE=InnoDB;

Table Relationship:Table Relationship:
Types of relationshipTypes of relationship

26

Types of Relationship
• One-to-one (1-1)

• One-to-many (1-n)

• Many-to-many (n-m)

27

One-to-One Relationship

• Example: A person has only one primary address
• “person” table has 1-1 relationship with “primary-

address” table
• The “primary-address” table has a foreign key field

referring to the primary key field of the “person” table

28

One-to-One Relationship Example
/* Create "person" table */
CREATE TABLE person (
 person_id INT NOT NULL AUTO_INCREMENT,
 pname varchar(255) NOT NULL,
 PRIMARY KEY (person_id)
) ENGINE=InnoDB;

/* Create "primary_address" table with FOREIGN KEY */
 CREATE TABLE primary_address (
 primary_address_id INT NOT NULL,
 address varchar(255) NOT NULL,
 p_id INT NOT NULL,
 PRIMARY KEY (primary_address_id),
 FOREIGN KEY (p_id) REFERENCES person (person_id)
) ENGINE=InnoDB;

29

One-to-One Relationship Example
+-------------+-----------------+
| person_id | pname |
+-------------+-----------------+
1	Sang Shin
2	Casey Jones
3	Bull Fighter
4	Passion You
+-------------+-------------------+

+---------------------------+--------------------------+------+
| primary_address_id | address | p_id |
+---------------------------+--------------------------+------+
11	11 dreamland	1
12	5 king road	2
13	67 nichole st	3
14	32 Washington st	4
+-------------------------+----------------------------+------+

30

One-to-Many (1-n) Relationship

• Example: A department has many employees and an
employee belongs to only a single department

• “department” table has 1-n relationship with “employee”
table

• The “employee” table has a foreign key field referring to
the primary key field of the “department” table

31

One-to-Many Relationship Example
/* Create departments table */
CREATE TABLE departments (
 department_id int(11) NOT NULL AUTO_INCREMENT,
 dname varchar(255) NOT NULL,
 PRIMARY KEY (department_id)
) ENGINE=InnoDB;

/* Create "employees" table with FOREIGN KEY */
 CREATE TABLE employees (
 employee_id int(11) NOT NULL AUTO_INCREMENT,
 ename varchar(255) NOT NULL,
 d_id int(11) NOT NULL,
 salary decimal(7,2) NOT NULL,
 PRIMARY KEY (employee_id),
 FOREIGN KEY (d_id) REFERENCES departments (department_id)
) ENGINE=InnoDB;

32

One-to-Many Relationship Example
+-------------------+----------------+
| department_id | dname |
+-------------------+----------------+
1	Engineering
2	Sales
3	Marketing
4	HR
+-------------------+----------------+

+----------------+-----------+------+---------+
| employee_id | ename | d_id | salary |
+----------------+-----------+------+---------+
1	jack	1	3000.00
2	mary	2	2500.00
3	nichole	1	4000.00
4	angie	2	5000.00
5	jones	3	5000.00
+-----------------+-----------+------+---------+

33

Many-to-Many (n-m) Relationship

• Example: A student takes many courses and each course
has many students

• “student” and “course” has m-n relationship with each other

• Need a join table (intersection table) called “student-course”
> “student-course” table has foreign key fields to both “student” and

“course” tables
> “student-course” table's primary key is typically composite of the

student's and course's primary keys
> “student-course” table can contain other fields of its own such as

“course registration date”

34

Many-to-Many Relationship Example
/* Create student table */
CREATE TABLE student (
 student_id INT NOT NULL AUTO_INCREMENT,
 sname varchar(255) NOT NULL,
 PRIMARY KEY (student_id)
) ENGINE=InnoDB;

/* Create course table */
CREATE TABLE course (
 course_id INT NOT NULL AUTO_INCREMENT,
 cname varchar(255) NOT NULL,
 PRIMARY KEY (course_id)
) ENGINE=InnoDB;

35

Many-to-Many Relationship Example

/* Create "student_course" join table with FOREIGN KEY to
 * both student and course tables. */
CREATE TABLE student_course (
 s_id INT NOT NULL,
 c_id INT NOT NULL,
 PRIMARY KEY (s_id, c_id),
 FOREIGN KEY (s_id) REFERENCES student (student_id),
 FOREIGN KEY (c_id) REFERENCES course (course_id)
) ENGINE=InnoDB;

36

Many-to-Many Relationship Example
+------------+----------------------------+
| course_id | cname |
+------------+----------------------------+
11	Computer Science 101
22	MySQL
33	Java programming
+------------+----------------------------+
3 rows in set (0.00 sec)

+--------------+-----------+
| student_id | sname |
+--------------+-----------+
1	jack
2	mary
3	nichole
4	mike
+--------------+-----------+
4 rows in set (0.00 sec)

37

Many-to-Many Relationship Example
+------+------+
 s_id | c_id |
+------+------+
1	11
1	22
3	22
4	22
+------+------+

38

Lab:Lab:

Exercise 2: Foreign KeysExercise 2: Foreign Keys
1612_mysql_join.zip1612_mysql_join.zip

Table Relationship:Table Relationship:
Referential IntegrityReferential Integrity

40

What is Referential Integrity?

• FOREIGN KEY constraint specifies that the data in a
foreign key must match the data in the primary key of
the linked table

• The “d_id” foreign key field of the “employees” table
must contain a valid department number
> You cannot add a new employee which has a d_id value that

is not existent in department table

• The departments table cannot be dropped as long as
there is a employee whose foreign key refers to it

41

Referential Integrity Example
+-------------------+------------------+
| department_id | dname |
+-------------------+------------------+
1	Engineering
2	Sales
3	Marketing
4	HR
+-------------------+-------------------+	
+----------------+----------+------+-----------+	
employee_id	ename
+----------------+----------+------+-----------+	
1	jack
2	mary
3	nichole
4	angie
5	jones
+----------------+-----------+------+------------+
mysql> INSERT INTO employees(employee_id, ename, salary, d_id)
 -> VALUES (6, 'newperson', '5000.00', 10);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails (`mydb`.`employees`,
CONSTRAINT `employees_ibfk_1` FOREIGN KEY (`d_id`) REFERENCES `departments` (`department_id`))

42

Lab:Lab:

Exercise 3: Referential IntegrityExercise 3: Referential Integrity
1612_mysql_join.zip1612_mysql_join.zip

Table Relationship:Table Relationship:
Automatic DeleteAutomatic Delete
and Updateand Update

44

Automatic Delete and Update

• The ON DELETE CASCADE or ON UPDATE
CASCADE clause to the FOREIGN KEY ..
REFERENCES modifier enabled automatic deletion or
update of the records
/* Create "employees" table with FOREIGN KEY */
CREATE TABLE employees (
 employee_id int(11) NOT NULL AUTO_INCREMENT,
 ename varchar(255) NOT NULL,
 d_id int(11) NOT NULL,
 salary decimal(7,2) NOT NULL,
 PRIMARY KEY (employee_id),
 FOREIGN KEY (d_id) REFERENCES departments (department_id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
) ENGINE=InnoDB;

45

Automatic Delete Example
mysql> DELETE FROM departments WHERE department_id = 2;
Query OK, 1 row affected (0.05 sec)

mysql> SELECT * FROM departments;
+---------------+-------------+
| department_id | dname |
+---------------+-------------+
3	Marketing
4	HR
11	Engineering
+---------------+-------------+
3 rows in set (0.00 sec)

// Observe that the employee record whose foreign key is 2 are automatically deleted.
mysql> SELECT * FROM employees;
+-------------+---------+------+---------+
| employee_id | ename | d_id | salary |
+-------------+---------+------+---------+
1	jack	11	3000.00
3	nichole	11	4000.00
5	jones	3	5000.00
+-------------+---------+------+---------+
3 rows in set (0.00 sec)

46

Lab:Lab:
Exercise 4: Automatic Delete/UpdateExercise 4: Automatic Delete/Update

1612_mysql_join.zip1612_mysql_join.zip

UnionUnion

48

Union

• UNION is used to combine the result from multiple
SELECT statements into a single result set
/* Combine the output of multiple SELECT */
SELECT ename, salary FROM HighSalaryEmployees
UNION
SELECT ename, salary FROM LowSalaryEmployees;

49

Lab:Lab:
Exercise 5: UnionExercise 5: Union

1612_mysql_join.zip1612_mysql_join.zip

SubquerySubquery

51

What is Subquery?

• A subquery is a SELECT statement within another
statement except that its result set always returns a
single column containing one or more values

• A subquery can be used anywhere an expression can
be used

• A subquery must always appear within parentheses

52

Why Subquery?

• They allow queries that are structured so that it is
possible to isolate each part of a statement.

• They provide alternative ways to perform operations
that would otherwise require complex joins and unions.

• They are, in general, more readable than complex joins
or unions.

53

Sunquery Example #1
SELECT ename, salary FROM employees
WHERE salary >
 (SELECT AVG(salary) FROM employees);

+-----------+---------+
| ename | salary |
+-----------+---------+
nichole	4000.00
angie	5000.00
jones	5000.00
+-----------+---------+

54

Sunquery Example #2
SELECT ename, salary FROM employees
WHERE d_id =
 (SELECT department_id FROM departments
 WHERE dname = 'Sales');

+-------+---------+
| name | salary |
+-------+---------+
| mary | 2500.00 |
| angie | 5000.00 |
+-------+---------+
2 rows in set (0.00 sec)

55

Lab:Lab:
Exercise 6: SubqueryExercise 6: Subquery
1612_mysql_join.zip1612_mysql_join.zip

ViewView

57

What is a View?

• A view is a virtual table which is composed of result set
of a SELECT query.

• Because view is like the table which consists of row
and column so you can retrieve and update data on it in
the same way with table.

• When the tables which are the source data of a view
changes; the data in the view change also

58

Why View?

• When a complex query is called repeatedly, it would be
beneficial to create a virtual table (view)

59

View Example
CREATE VIEW v_HighSalaryEmployees AS
 SELECT ename, salary FROM employees
 WHERE salary > 4000;

CREATE VIEW v_LowSalaryEmployees AS
 SELECT ename, salary FROM employees
 WHERE salary < 3000;

mysql> SELECT * from v_HighSalaryEmployees;
+-------+---------+
| ename | salary |
+-------+---------+
| angie | 5000.00 |
| jones | 5000.00 |
+-------+---------+
2 rows in set (0.00 sec)

60

Lab:Lab:
Exercise 7: ViewExercise 7: View

1612_mysql_join.zip1612_mysql_join.zip

61

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

61

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

