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Topics

• Modules

• Multi-module application

• Angular application directory structure

• Module loading and dependencies

• Angular initialization (bootstrapping)



ModulesModules
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What is a Module?

• You can think of a module as a container for the different parts of 
your app – controllers, services, filters, directives, etc.
– From AngularJS 1.3.0, a controller cannot exist without being a part 

of a module

• You create a module via
– var app = angular.module('myApp', []);

• Yon can reference a previously created module via
– var app = angular.module('myApp');
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Module and Dependency Modules

• Your application can be constructed with other helper modules 
(dependency modules)
– Increases modularity and reusability of your application

var app = angular.module('myApp', ['myModule1', 'myModule2']);



Multi-Module ApplicationMulti-Module Application
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How to Construct Multi-Module App?

• For non-simple application, you want to break your application to 
multiple modules 
> A module for each feature
> A module for each reusable directive, component and filter
> And an application level module which depends on the above 

modules and contains any initialization code
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Why Modulization?

• Reusability
> Other applications can use the modules – it is a matter of copying the 

module directory to the other application 

• Self-contained Context
> Each module provides a context in which related components 

(services, directives, filters) are grouped together

• Testability
> Each module should be tested on its own



Angular App Angular App 
Directory StructureDirectory Structure
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Possible App Directory Structure #1

app/
------controllers/
--------------------mainController.js
--------------------anotherController.js
------directives/
--------------------mainDirective.js
--------------------anotherDirective.js
------services/
--------------------mainService.js
--------------------anotherService.js
------filters/
--------------------filter1.js
------views/
--------------------mainView.html
--------------------anotherView.html
------styles/
--------------------main.css
--------------------another.css
------app.js
------index.html

Based on
AngularJS structural
component category
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Possible App Directory Structure #2

app/
------main/
--------------------mainController.js
--------------------mainDirective.js
--------------------mainService.js
--------------------mainView.html
--------------------main.css
------functionality1/
--------------------anotherController.js
--------------------anotherDirective.js
--------------------anotherService.js
--------------------anotherView.html
--------------------another.css
------shared/
--------------------sharedFilter.js
--------------------shared.css
------app.js
------index.html

Based on
Feature/Functionality

Recommended
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Lab:Lab:

Exercise 1: Creating Multi-module Exercise 1: Creating Multi-module 
ApplicationApplication

3306_angularjs_06_modules.zip3306_angularjs_06_modules.zip



Module Loading &Module Loading &
DependenciesDependencies
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Configuration & Run Blocks of a Module

• A module is a collection of configuration and run blocks which get 
applied to the application during the bootstrap process

• Configuration block
> Gets executed during the provider registrations and configuration 

phase
> Only providers (not instances) and constants can be injected into 

configuration blocks
> Prevents accidental instantiation of services before they have been 

fully configured.

• Run block
> Gets executed after the injector is created and are used to kick start 

the application
> Only instances and constants can be injected into run blocks.
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Configuration & Run Blocks 

angular.module('myModule', []).
config(function(injectables) { // provider-injector
  // This is an example of config block.
  // You can have as many of these as you want.
  // You can only inject Providers (not instances)
  // into config blocks.
}).
run(function(injectables) { // instance-injector
  // This is an example of a run block.
  // You can have as many of these as you want.
  // You can only inject instances (not Providers)
  // into run blocks
});



16

Configuration Blocks

angular.module('myModule', []).
  value('a', 123).
  factory('a', function() { return 123; }).
  directive('directiveName', ...).
  filter('filterName', ...);

// is same as

angular.module('myModule', []).
  config(function($provide, $compileProvider, $filterProvider) {
    $provide.value('a', 123);
    $provide.factory('a', function() { return 123; });
    $compileProvider.directive('directiveName', ...);
    $filterProvider.register('filterName', ...);
  });
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Run Blocks

• Run blocks are the closest thing in Angular to the main method
> A run block is the code which needs to run to kick-start the application

• It is executed after all of the services have been configured and the 
injector has been created

• Run blocks typically contain code which is hard to unit-test, and for 
this reason should be declared in isolated modules, so that they 
can be ignored in the unit-tests.
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Dependencies Between Modules

• Modules can list other modules as their dependencies

• “Depending on a module” implies that the required module needs to 
be loaded before the requiring module is loaded
> The configuration blocks of the required modules execute before the 

configuration blocks of the requiring module
> The same is true for the run blocks

• Each module can only be loaded once, even if multiple other 
modules require it.
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Creation vs Retrieval

• Creation of a module
> angular.module('myModule', []) will create the module myModule and 

overwrite any existing module named myModule

• Retrieval of a module
> angular.module('myModule') to retrieve an existing module
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Creation vs Retrieval Example

var myModule = angular.module('myModule', []);

// add some directives and services
myModule.directive('myDirective', ...);
myModule.factory('myService', ...);

// overwrites both myService and myDirective by creating a new module
var myModule = angular.module('myModule', []);

// throws an error because myOtherModule has yet to be defined
var myModule = angular.module('myOtherModule');



RecipesRecipes
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Module contains recipes

• In order for the injector to know how to create and wire together all 
of these objects, it needs a registry of "recipes"
> Each recipe has an identifier of the object and the description of how 

to create this object

• Each recipe belongs to an Angular module
> An Angular module is a bag that holds one or more recipes

• When an Angular application starts with a given application 
module, Angular creates a new instance of injector, which in turn 
creates a registry of recipes as a union of all recipes defined in the 
core "ng" module

• The injector then consults the recipe registry when it needs to 
create an object for your application.
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Value Recipe

• Let's say that we want to have a very simple service called 
"clientId" that provides a string representing an authentication id

var myApp = angular.module('myApp', []);
myApp.value('clientId', 'a12345654321x');

myApp.controller('DemoController', ['clientId', function DemoController(clientId) {
  this.clientId = clientId;
}]);

<html ng-app="myApp">
  <body ng-controller="DemoController as demo">
    Client ID: {{demo.clientId}}
  </body>
</html>
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Factory Recipe

• The Factory recipe adds the following abilities to the value recipe
> ability to use other services (have dependencies)
> service initialization
> delayed/lazy initialization

myApp.factory('apiToken', ['clientId', function apiTokenFactory(clientId) {
  var encrypt = function(data1, data2) {
    // NSA-proof encryption algorithm:
    return (data1 + ':' + data2).toUpperCase();
  };

  var secret = window.localStorage.getItem('myApp.secret');
  var apiToken = encrypt(clientId, secret);

  return apiToken;
}]);
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Lab:Lab:

Exercise 2: Value RecipeExercise 2: Value Recipe
3306_angularjs_06_modules.zip3306_angularjs_06_modules.zip



Angular InitializationAngular Initialization
(Bootstrap)(Bootstrap)
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Automatic Initialization

• Angular initializes automatically upon DOMContentLoaded event

• At this point Angular looks for the ng-app directive which designates 
your application root

  Fired when the initial HTML 
document has been 

completely loaded and 
parsed, without 

waiting for stylesheets, 
images,

  The compilation is a process 
of walking the DOM tree 

and matching DOM elements 
to directives
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After “ng-app” is found, Angular will

• Load the module associated with the directive
> ng-app=”myApp”

• Create the application injector 
> The injector is responsible for actually creating instances
> There is only a single injector per application
> Can be referred to as $injector

• Compile the DOM treating the ng-app directive as the root of the 
compilation
> The compilation is a process of walking the DOM tree and 

matching DOM elements to directives
> This allows you to tell it to treat only a portion of the DOM as an 

Angular application



• Specialist onsite training in Linux, Cloud, Database, Architecture, Software and 
Web  Development Technologies

• Accredited by the LPI, CompTIA, Hortonworks and the Cloud Credential Council to 
deliver training, examinations and certifications.

• Over 230 courses available

• All GuruTeam instructors have extensive real-world experience in their technologies 

• Clients are indigenous Irish Companies and Multinationals

• We can bring high spec preconfigured equipment for deliveries in Ireland, the UK 
and Europe.
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