
AngularJS: Modules

GuruTeam Instructor: Sang Shin

2

Topics

• Modules

• Multi-module application

• Angular application directory structure

• Module loading and dependencies

• Angular initialization (bootstrapping)

ModulesModules

4

What is a Module?

• You can think of a module as a container for the different parts of
your app – controllers, services, filters, directives, etc.
– From AngularJS 1.3.0, a controller cannot exist without being a part

of a module

• You create a module via
– var app = angular.module('myApp', []);

• Yon can reference a previously created module via
– var app = angular.module('myApp');

5

Module and Dependency Modules

• Your application can be constructed with other helper modules
(dependency modules)
– Increases modularity and reusability of your application

var app = angular.module('myApp', ['myModule1', 'myModule2']);

Multi-Module ApplicationMulti-Module Application

7

How to Construct Multi-Module App?

• For non-simple application, you want to break your application to
multiple modules
> A module for each feature
> A module for each reusable directive, component and filter
> And an application level module which depends on the above

modules and contains any initialization code

8

Why Modulization?

• Reusability
> Other applications can use the modules – it is a matter of copying the

module directory to the other application

• Self-contained Context
> Each module provides a context in which related components

(services, directives, filters) are grouped together

• Testability
> Each module should be tested on its own

Angular App Angular App
Directory StructureDirectory Structure

10

Possible App Directory Structure #1

app/
------controllers/
--------------------mainController.js
--------------------anotherController.js
------directives/
--------------------mainDirective.js
--------------------anotherDirective.js
------services/
--------------------mainService.js
--------------------anotherService.js
------filters/
--------------------filter1.js
------views/
--------------------mainView.html
--------------------anotherView.html
------styles/
--------------------main.css
--------------------another.css
------app.js
------index.html

Based on
AngularJS structural
component category

11

Possible App Directory Structure #2

app/
------main/
--------------------mainController.js
--------------------mainDirective.js
--------------------mainService.js
--------------------mainView.html
--------------------main.css
------functionality1/
--------------------anotherController.js
--------------------anotherDirective.js
--------------------anotherService.js
--------------------anotherView.html
--------------------another.css
------shared/
--------------------sharedFilter.js
--------------------shared.css
------app.js
------index.html

Based on
Feature/Functionality

Recommended

12

Lab:Lab:

Exercise 1: Creating Multi-module Exercise 1: Creating Multi-module
ApplicationApplication

3306_angularjs_06_modules.zip3306_angularjs_06_modules.zip

Module Loading &Module Loading &
DependenciesDependencies

14

Configuration & Run Blocks of a Module

• A module is a collection of configuration and run blocks which get
applied to the application during the bootstrap process

• Configuration block
> Gets executed during the provider registrations and configuration

phase
> Only providers (not instances) and constants can be injected into

configuration blocks
> Prevents accidental instantiation of services before they have been

fully configured.

• Run block
> Gets executed after the injector is created and are used to kick start

the application
> Only instances and constants can be injected into run blocks.

15

Configuration & Run Blocks

angular.module('myModule', []).
config(function(injectables) { // provider-injector
 // This is an example of config block.
 // You can have as many of these as you want.
 // You can only inject Providers (not instances)
 // into config blocks.
}).
run(function(injectables) { // instance-injector
 // This is an example of a run block.
 // You can have as many of these as you want.
 // You can only inject instances (not Providers)
 // into run blocks
});

16

Configuration Blocks

angular.module('myModule', []).
 value('a', 123).
 factory('a', function() { return 123; }).
 directive('directiveName', ...).
 filter('filterName', ...);

// is same as

angular.module('myModule', []).
 config(function($provide, $compileProvider, $filterProvider) {
 $provide.value('a', 123);
 $provide.factory('a', function() { return 123; });
 $compileProvider.directive('directiveName', ...);
 $filterProvider.register('filterName', ...);
 });

17

Run Blocks

• Run blocks are the closest thing in Angular to the main method
> A run block is the code which needs to run to kick-start the application

• It is executed after all of the services have been configured and the
injector has been created

• Run blocks typically contain code which is hard to unit-test, and for
this reason should be declared in isolated modules, so that they
can be ignored in the unit-tests.

18

Dependencies Between Modules

• Modules can list other modules as their dependencies

• “Depending on a module” implies that the required module needs to
be loaded before the requiring module is loaded
> The configuration blocks of the required modules execute before the

configuration blocks of the requiring module
> The same is true for the run blocks

• Each module can only be loaded once, even if multiple other
modules require it.

19

Creation vs Retrieval

• Creation of a module
> angular.module('myModule', []) will create the module myModule and

overwrite any existing module named myModule

• Retrieval of a module
> angular.module('myModule') to retrieve an existing module

20

Creation vs Retrieval Example

var myModule = angular.module('myModule', []);

// add some directives and services
myModule.directive('myDirective', ...);
myModule.factory('myService', ...);

// overwrites both myService and myDirective by creating a new module
var myModule = angular.module('myModule', []);

// throws an error because myOtherModule has yet to be defined
var myModule = angular.module('myOtherModule');

RecipesRecipes

22

Module contains recipes

• In order for the injector to know how to create and wire together all
of these objects, it needs a registry of "recipes"
> Each recipe has an identifier of the object and the description of how

to create this object

• Each recipe belongs to an Angular module
> An Angular module is a bag that holds one or more recipes

• When an Angular application starts with a given application
module, Angular creates a new instance of injector, which in turn
creates a registry of recipes as a union of all recipes defined in the
core "ng" module

• The injector then consults the recipe registry when it needs to
create an object for your application.

23

Value Recipe

• Let's say that we want to have a very simple service called
"clientId" that provides a string representing an authentication id

var myApp = angular.module('myApp', []);
myApp.value('clientId', 'a12345654321x');

myApp.controller('DemoController', ['clientId', function DemoController(clientId) {
 this.clientId = clientId;
}]);

<html ng-app="myApp">
 <body ng-controller="DemoController as demo">
 Client ID: {{demo.clientId}}
 </body>
</html>

24

Factory Recipe

• The Factory recipe adds the following abilities to the value recipe
> ability to use other services (have dependencies)
> service initialization
> delayed/lazy initialization

myApp.factory('apiToken', ['clientId', function apiTokenFactory(clientId) {
 var encrypt = function(data1, data2) {
 // NSA-proof encryption algorithm:
 return (data1 + ':' + data2).toUpperCase();
 };

 var secret = window.localStorage.getItem('myApp.secret');
 var apiToken = encrypt(clientId, secret);

 return apiToken;
}]);

25

Lab:Lab:

Exercise 2: Value RecipeExercise 2: Value Recipe
3306_angularjs_06_modules.zip3306_angularjs_06_modules.zip

Angular InitializationAngular Initialization
(Bootstrap)(Bootstrap)

27

Automatic Initialization

• Angular initializes automatically upon DOMContentLoaded event

• At this point Angular looks for the ng-app directive which designates
your application root

 Fired when the initial HTML
document has been

completely loaded and
parsed, without

waiting for stylesheets,
images,

 The compilation is a process
of walking the DOM tree

and matching DOM elements
to directives

28

After “ng-app” is found, Angular will

• Load the module associated with the directive
> ng-app=”myApp”

• Create the application injector
> The injector is responsible for actually creating instances
> There is only a single injector per application
> Can be referred to as $injector

• Compile the DOM treating the ng-app directive as the root of the
compilation
> The compilation is a process of walking the DOM tree and

matching DOM elements to directives
> This allows you to tell it to treat only a portion of the DOM as an

Angular application

• Specialist onsite training in Linux, Cloud, Database, Architecture, Software and
Web Development Technologies

• Accredited by the LPI, CompTIA, Hortonworks and the Cloud Credential Council to
deliver training, examinations and certifications.

• Over 230 courses available

• All GuruTeam instructors have extensive real-world experience in their technologies

• Clients are indigenous Irish Companies and Multinationals

• We can bring high spec preconfigured equipment for deliveries in Ireland, the UK
and Europe.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

