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Topics

• Forms

• Two-way databinding between form and model

• Built-in CSS styles

• Form submission

• Form and element states

• Validation

• Show and hide
> ng-show, ng-hide
> ng-enabled, ng-disabled
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What is a Form and Input Elements?

• A Form is a collection of input elements (input, select, textarea) for 
the purpose of grouping them together
> Input elements are ways for a user to enter data

• Form and input elements provide validation services, so that the 
user can be notified of invalid input before submitting a form
> Provides a better user experience than server-side validation alone 

because the user gets instant feedback on how to correct the error
> The value of ngModel won't be set unless it passes validation for the 

input fields

• Typically you want to disable browser's native validation through 
“novalidate” attribute  



Two-way Databinding:Two-way Databinding:
Form and ModelForm and Model



6

Two-way Databinding: Form and ngModel

• Two-way data-binding works between a form (view) and models – 
whatever typed in input element is immediately reflected in the 
model and vice versa

 <div ng-controller="ExampleController">
  <form novalidate class="simple-form">
    Name: <input type="text" ng-model="user.name" /><br />
    E-mail: <input type="email" ng-model="user.email" /><br />
    Gender: <input type="radio" ng-model="user.gender" value="male" />male
    <input type="radio" ng-model="user.gender" value="female" />female<br />
    <input type="button" ng-click="reset()" value="Reset" />
    <input type="submit" ng-click="update(user)" value="Save" />
  </form>
  <pre>form = {{user | json}}</pre>
  
</div>



Built-in CSS StylesBuilt-in CSS Styles
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Built-in CSS classes with a Form

• To allow styling of form as well as input elements, ngModel adds 
these CSS classes automatically
> ng-valid: the model is valid
> ng-invalid: the model is invalid
> ng-pristine: the control hasn't been interacted with yet
> ng-dirty: the control has been interacted with
> ng-touched: the control has been blurred
> ng-untouched: the control hasn't been blurred

• It is still your job to provide styling rules for the above CSS classes, 
however
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Form and CSS Styling

•  Uses CSS to display validity of each form control
 <div ng-controller="ExampleController">
  <form novalidate class="css-form">
    Name: <input type="text" ng-model="user.name" required /><br />
    E-mail: <input type="email" ng-model="user.email" required /><br />
   ...
  </form>
</div>

<style type="text/css">
  .css-form input.ng-invalid.ng-touched {
    background-color: red;
  }
  .css-form input.ng-valid.ng-touched {
    background-color: green;
  }
</style>

If input element is touched,
and invalid, use red background 

styling rule
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Form Submission using ng-submit

• Enables binding angular expressions to “onsubmit” events

• It prevents the default action (which for form means sending the 
request to the server and reloading the current page), but only if the 
form does not contain action attribute

        <form ng-submit="submitMethod()">
            Enter text and hit enter:
            <input type="text" ng-model="text" name="text" />
            <input type="submit" id="submit" value="Submit" />
            <pre>list={{list}}</pre>
        </form>
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Form Submission using ng-submit

<form ng-submit="submit()" >
      Enter text and hit enter:<input type="text" ng-model="text" name="text" />
      <input type="submit" id="submit" value="Submit" />
      <pre>list={{list}}</pre>
</form>
<script>
angular.module('submitExample', [])
   .controller('ExampleController', ['$scope', function ($scope) {
        $scope.list = [];
        $scope.text = 'hello';
        $scope.submit = function () {
                                        if ($scope.text) {
                                            $scope.list.push(this.text);
                                            $scope.text = '';
                                        }
                                     };
    }]);
</script>



Form and Element StateForm and Element State
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Binding to form and Control state

• Internal states of both form and input elements are available for 
binding in the view using the standard binding 
> Custom error message displayed after the user interacted with an 

input element (i.e. when $touched is set)
> Custom error message displayed upon submitting the form 

($submitted is set), even if the user didn't interact with a control
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Binding to Form and Input Element State

<form name="form" class="css-form" novalidate>
    Name:
     <input type="text" ng-model="user.name" name="uName" required="" />
    <br />
    <div ng-show="form.$submitted || form.uName.$touched">
         <div ng-show="form.uName.$error.required">Tell us your name.</div>
    </div>

    E-mail:
    <input type="email" ng-model="user.email" name="uEmail" required="" />
    <br />
    <div ng-show="form.$submitted || form.uEmail.$touched">
        <span ng-show="form.uEmail.$error.required">Tell us your email.</span>
        <span ng-show="form.uEmail.$error.email">This is not a valid email.</span>
    </div>
</form>
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Lab:Lab:

Exercise 1: Forms Exercise 1: Forms 
3307_angularjs_07_forms.zip3307_angularjs_07_forms.zip
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Form Validation

• Angular provides basic implementation for most common HTML5 
input types
> text, number, url, email, date, radio, checkbox

• Angular also provides some directives for validation
> required, pattern, minlength, maxlength, min, max

• You want to turn off default browser validation with “novalidate”
<form name="form" ng-submit="submit()" novalidate>
<label>Firstname</label>
<input name="firstname" type="text" ng-model="user.firstname" required minlength=5/>
<label>Age</label>
<input type="number" ng-model="user.age" min=3 max=100 />
<br>Email
<input type="email" ng-model="user.email" />
<br>
<button ng-disabled="form.$invalid" class="btn">Submit</button>
</form>
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Form Field State 

• Angular keeps track of all its input elements (controls) and nested 
forms as well as the state of them, such as being valid/invalid or 
dirty/pristine
> $pristine: User has not interacted with the field
> $dirty: User has interacted with the field
> $valid: The field content is valid
> $invalid: The field content is invalid

<p>Email:<br>
  <input type="email" name="email" ng-model="email" required>
  <span style="color:red" ng-show="myForm.email.$dirty && myForm.email.$invalid">
  <span ng-show="myForm.email.$error.required">Email is required.</span>
  <span ng-show="myForm.email.$error.email">Invalid email address.</span>
  </span>
</p>
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Disable Submit Button until form is valid 

• form.$valid or form.$invalid indicates validity of the form values
<form name="form" ng-submit="submit()" novalidate>
    <label>Firstname</label>
    <input name="firstname" type="text" ng-model="user.firstname" required minlength=5/>
    <label>Age</label>
    <input type="number" ng-model="user.age" min=3 max=100 />
    <br>Email
    <input type="email" ng-model="user.email" />
    <br>
    <button ng-disabled="form.$invalid" class="btn">Submit</button>
</form>

Disable submit button
until the form is valid
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Lab:Lab:

Exercise 2: Form Validation Exercise 2: Form Validation 
3307_angularjs_07_forms.zip3307_angularjs_07_forms.zip



Show and HideShow and Hide
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ngShow and ngHide

• ngShow directive shows or hides the given HTML element based 
on the expression provided to the ngShow attribute
<!-- when $scope.myValue is truthy (element is visible) -->
<div ng-show="myValue"></div>

• ngHide directive shows or hides the given HTML element based on 
the expression provided to the ngHide attribute
<!-- when $scope.myValue is falsy (element is visible) -->
<div ng-hide="myValue"></div>
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Lab:Lab:

Exercise 3: Show and Hide Exercise 3: Show and Hide 
3307_angularjs_07_forms.zip3307_angularjs_07_forms.zip



• Specialist onsite training in Linux, Cloud, Database, Architecture, Software and 
Web  Development Technologies

• Accredited by the LPI, CompTIA, Hortonworks and the Cloud Credential Council to 
deliver training, examinations and certifications.

• Over 230 courses available

• All GuruTeam instructors have extensive real-world experience in their technologies 

• Clients are indigenous Irish Companies and Multinationals

• We can bring high spec preconfigured equipment for deliveries in Ireland, the UK 
and Europe.
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