
AngularJS: Forms
      GuruTeam Instructor: Sang Shin   

  



2

Topics

• Forms

• Two-way databinding between form and model

• Built-in CSS styles

• Form submission

• Form and element states

• Validation

• Show and hide
> ng-show, ng-hide
> ng-enabled, ng-disabled



FormsForms



4

What is a Form and Input Elements?

• A Form is a collection of input elements (input, select, textarea) for 
the purpose of grouping them together
> Input elements are ways for a user to enter data

• Form and input elements provide validation services, so that the 
user can be notified of invalid input before submitting a form
> Provides a better user experience than server-side validation alone 

because the user gets instant feedback on how to correct the error
> The value of ngModel won't be set unless it passes validation for the 

input fields

• Typically you want to disable browser's native validation through 
“novalidate” attribute  



Two-way Databinding:Two-way Databinding:
Form and ModelForm and Model



6

Two-way Databinding: Form and ngModel

• Two-way data-binding works between a form (view) and models – 
whatever typed in input element is immediately reflected in the 
model and vice versa

 <div ng-controller="ExampleController">
  <form novalidate class="simple-form">
    Name: <input type="text" ng-model="user.name" /><br />
    E-mail: <input type="email" ng-model="user.email" /><br />
    Gender: <input type="radio" ng-model="user.gender" value="male" />male
    <input type="radio" ng-model="user.gender" value="female" />female<br />
    <input type="button" ng-click="reset()" value="Reset" />
    <input type="submit" ng-click="update(user)" value="Save" />
  </form>
  <pre>form = {{user | json}}</pre>
  
</div>



Built-in CSS StylesBuilt-in CSS Styles



8

Built-in CSS classes with a Form

• To allow styling of form as well as input elements, ngModel adds 
these CSS classes automatically
> ng-valid: the model is valid
> ng-invalid: the model is invalid
> ng-pristine: the control hasn't been interacted with yet
> ng-dirty: the control has been interacted with
> ng-touched: the control has been blurred
> ng-untouched: the control hasn't been blurred

• It is still your job to provide styling rules for the above CSS classes, 
however



9

Form and CSS Styling

•  Uses CSS to display validity of each form control
 <div ng-controller="ExampleController">
  <form novalidate class="css-form">
    Name: <input type="text" ng-model="user.name" required /><br />
    E-mail: <input type="email" ng-model="user.email" required /><br />
   ...
  </form>
</div>

<style type="text/css">
  .css-form input.ng-invalid.ng-touched {
    background-color: red;
  }
  .css-form input.ng-valid.ng-touched {
    background-color: green;
  }
</style>

If input element is touched,
and invalid, use red background 

styling rule



Form SubmissionForm Submission



11

Form Submission using ng-submit

• Enables binding angular expressions to “onsubmit” events

• It prevents the default action (which for form means sending the 
request to the server and reloading the current page), but only if the 
form does not contain action attribute

        <form ng-submit="submitMethod()">
            Enter text and hit enter:
            <input type="text" ng-model="text" name="text" />
            <input type="submit" id="submit" value="Submit" />
            <pre>list={{list}}</pre>
        </form>



12

Form Submission using ng-submit

<form ng-submit="submit()" >
      Enter text and hit enter:<input type="text" ng-model="text" name="text" />
      <input type="submit" id="submit" value="Submit" />
      <pre>list={{list}}</pre>
</form>
<script>
angular.module('submitExample', [])
   .controller('ExampleController', ['$scope', function ($scope) {
        $scope.list = [];
        $scope.text = 'hello';
        $scope.submit = function () {
                                        if ($scope.text) {
                                            $scope.list.push(this.text);
                                            $scope.text = '';
                                        }
                                     };
    }]);
</script>



Form and Element StateForm and Element State



14

Binding to form and Control state

• Internal states of both form and input elements are available for 
binding in the view using the standard binding 
> Custom error message displayed after the user interacted with an 

input element (i.e. when $touched is set)
> Custom error message displayed upon submitting the form 

($submitted is set), even if the user didn't interact with a control



15

Binding to Form and Input Element State

<form name="form" class="css-form" novalidate>
    Name:
     <input type="text" ng-model="user.name" name="uName" required="" />
    <br />
    <div ng-show="form.$submitted || form.uName.$touched">
         <div ng-show="form.uName.$error.required">Tell us your name.</div>
    </div>

    E-mail:
    <input type="email" ng-model="user.email" name="uEmail" required="" />
    <br />
    <div ng-show="form.$submitted || form.uEmail.$touched">
        <span ng-show="form.uEmail.$error.required">Tell us your email.</span>
        <span ng-show="form.uEmail.$error.email">This is not a valid email.</span>
    </div>
</form>



16

Lab:Lab:

Exercise 1: Forms Exercise 1: Forms 
3307_angularjs_07_forms.zip3307_angularjs_07_forms.zip



ValidationValidation



18

Form Validation

• Angular provides basic implementation for most common HTML5 
input types
> text, number, url, email, date, radio, checkbox

• Angular also provides some directives for validation
> required, pattern, minlength, maxlength, min, max

• You want to turn off default browser validation with “novalidate”
<form name="form" ng-submit="submit()" novalidate>
<label>Firstname</label>
<input name="firstname" type="text" ng-model="user.firstname" required minlength=5/>
<label>Age</label>
<input type="number" ng-model="user.age" min=3 max=100 />
<br>Email
<input type="email" ng-model="user.email" />
<br>
<button ng-disabled="form.$invalid" class="btn">Submit</button>
</form>



19

Form Field State 

• Angular keeps track of all its input elements (controls) and nested 
forms as well as the state of them, such as being valid/invalid or 
dirty/pristine
> $pristine: User has not interacted with the field
> $dirty: User has interacted with the field
> $valid: The field content is valid
> $invalid: The field content is invalid

<p>Email:<br>
  <input type="email" name="email" ng-model="email" required>
  <span style="color:red" ng-show="myForm.email.$dirty && myForm.email.$invalid">
  <span ng-show="myForm.email.$error.required">Email is required.</span>
  <span ng-show="myForm.email.$error.email">Invalid email address.</span>
  </span>
</p>



20

Disable Submit Button until form is valid 

• form.$valid or form.$invalid indicates validity of the form values
<form name="form" ng-submit="submit()" novalidate>
    <label>Firstname</label>
    <input name="firstname" type="text" ng-model="user.firstname" required minlength=5/>
    <label>Age</label>
    <input type="number" ng-model="user.age" min=3 max=100 />
    <br>Email
    <input type="email" ng-model="user.email" />
    <br>
    <button ng-disabled="form.$invalid" class="btn">Submit</button>
</form>

Disable submit button
until the form is valid



21

Lab:Lab:

Exercise 2: Form Validation Exercise 2: Form Validation 
3307_angularjs_07_forms.zip3307_angularjs_07_forms.zip



Show and HideShow and Hide



23

ngShow and ngHide

• ngShow directive shows or hides the given HTML element based 
on the expression provided to the ngShow attribute
<!-- when $scope.myValue is truthy (element is visible) -->
<div ng-show="myValue"></div>

• ngHide directive shows or hides the given HTML element based on 
the expression provided to the ngHide attribute
<!-- when $scope.myValue is falsy (element is visible) -->
<div ng-hide="myValue"></div>



24

Lab:Lab:

Exercise 3: Show and Hide Exercise 3: Show and Hide 
3307_angularjs_07_forms.zip3307_angularjs_07_forms.zip



• Specialist onsite training in Linux, Cloud, Database, Architecture, Software and 
Web  Development Technologies

• Accredited by the LPI, CompTIA, Hortonworks and the Cloud Credential Council to 
deliver training, examinations and certifications.

• Over 230 courses available

• All GuruTeam instructors have extensive real-world experience in their technologies 

• Clients are indigenous Irish Companies and Multinationals

• We can bring high spec preconfigured equipment for deliveries in Ireland, the UK 
and Europe.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

