
1

        

                  TypeScriptTypeScript

1

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”



2

Topics

• JavaScript language variants
• ES6 
• TypeScipt 
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JavaScript language variants

• There are many variants 
> ES5, ES6, then ES7 (ES2016) TypeScript, AtScript, Dart, 

CoffeeScript, ...

• ES6 and ES7 come with a set of new language features
• Today, however, ES5 is still the version that is most widely 

supported by browsers
• Typescript is Microsoft’s extension of JavaScript that comes with 

powerful type checking abilities and object oriented features
> TypeScript is superset of ES5, ES6, ES7
> TypeScript code gets transpiled into ES5 code for  execution in 

browsers



5

TypeScript is superset of JavaScript 

• Any ES5 and ES6 JavaScript 
programs are valid TypeScript 
programs

• TypeScript provides extra 
features such as Interfaces, 
Generics over ES6 (We will 
cover these in detail later on)
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Angular 2 and TypeScript

• Angular 2 uses TypeScript as a language of choice
> You can build Angular 2 apps using JavaScript but you lose type 

checking (and other language features) of TypeScript

• Most documentation and example codes in Angular 2 are based 
on TypeScript
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TypeScript Tools

• Transpiler
> tsc myTypeScriptCode.ts  (to compile TS code to JS)
> node myTypeScriptCode.js (to execute JS code)

• Transpiler and executor in a single step
> [sudo] npm install -g ts-node
> ts-node myTypeScriptCode.ts (to compile and execute TS  code)
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Lab: Install Typescript

• Install node.js (if it has not been installed already)
• Install typescript
> [sudo] npm install -g typescript
> [sudo] npm install -g ts-node

• Run typescript code
> ts-node myCode



ES6  ES6  
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ES6 Features

• Classes
• let and const variables
• Arrow functions (fat arrow)
• Modules
• Promises
• Decorators
• for-of
• ...
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ES5 (old-style) code of creating a Class

function User(id, firstName, lastName) {
  this.id = id;
  this.firstName = firstName;
  this.lastName = lastName;
}

User.prototype = {
  getFullName: function() {
    return return this.firstName + " " + this.lastName; 
  }
};
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ES6: Class

class User {
    id;
    firstName;
    lastName;

    constructor (id, firstName, lastName){
        this.id = id;
        this.firstName = firstName;
        this.lastName = lastName;
    }

    getFullName(){
        return this.firstName + " " + this.lastName; 
    }
}

let user1 = new User(1, "sang", "shin");
console.log(user1.getFullName());
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ES6: Class Inheritance

class Person {
   ...
}

class Student extends Person {
    school;

    constructor (firstName, lastName, school){
       super(firstName, lastName);
       this.school = school;
    }

    getFullNameInfo(){
        return this.firstName + " " + this.lastName + " " 
               + this.school; 
    }
}
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ES6: Variables – var, let, const

• ES6 provides a new way of specifying variables: let and const
> let and const create block scoped variables – they live and die 

within {..} block
> let can be reassigned while const variable can’t be reassigned

• Before ES6, we only had var which create a function-scoped 
variable

// ES5 example - “i” will be available after the loop
for (var i in items) {
}

// ES6 example - “i” will not be available after the loop
for (let i in items) {
 // i is available
}
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ES6: Template Strings

// - write long inline string without having to use concatenation
// - defined opening and closing back ticks
let template1 = `
  <div>
    <h2>Rufferford's Travels</h2>
    <p>
      A most gripping tale of one dog's quest
      for more flavors.
    </p>
  </div>
`;

// You can also do string interpolation using 
// ${expression} placeholders:
let x = 5;
let y = 10;
let template2 = `
  <div>The sum is ${ x + y }</div>
`;
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ES6: JavaScript Modules

• ES6 standardized module system (over two existing module 
systems – AMD and CommonJS)

• By default, anything you declare in a file in a ES6 project is not 
available outside that file. You have to use the export keyword to 
explicitly make it available

• Not the same thing as Angular module system

// teacher.ts
export class Teacher {
  ...
}

// main.ts
import { Teacher } from './teacher';

let teacher: Teacher = new Teacher('sang');
console.log(teacher.getName());
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ES6: Promises

• Promises make it easier to write asynchronous code compared 
to using callbacks

let myPromise = new Promise(
    (resolve, reject) => {
        setTimeout(() => resolve("JPassion.com"), 3000);
    });

myPromise.then(value => console.log(value))
                  .catch(error => console.log(error));
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ES6: Arrow Functions (Fat Arrow)

• More concise syntax for writing function expressions – no need 
to type the function keyword, return keyword (it’s implicit in 
arrow functions), and curly brackets

// ES5
var multiply1 = function (x, y) {
  return x * y;
}

// ES6 using Fat arrow
var multiply2 = (x, y) => x * y;
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ES6: Arrow Functions (Fat Arrow)

• Fat arrow also changes the way “this” binds in functions
• Problem (when Fat Arrow is not used)
> In JavaScript, each function in JavaScript defines its own “this” 

context object
> If the function is a callback function, “this” does not represents the 

context you want – one workaround is to create a closure as 
shown below

class MyClass5 {

  name: string = "Sang5";

  constructor() {
    var self = this; // create a closure
    setTimeout(function () {
      console.log(self.name); // use a closure as work-around
    }, 3000);
  }
}
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ES6: Arrow Functions (Fat Arrow)

• Fat arrow does not create its own “this” context object  - so there 
is no need to use a workaround such as using a closure, instead 
you can use this

class MyClass {

  name:string;

  constructor() {
    console.log("Expect Sang in 3 seconds");
    this.name = 'Sang';
    setTimeout(() => {
      console.log(this.name);
    }, 3000);
  }
}
let myClass = new MyClass();
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Lab:Lab:

ES6 CodeES6 Code



TypeScript TypeScript 
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Why TypeScript?

• Building large-scale JavaScript application without using 
compile-type checking turned out to be very challenging
> Even with all the testings you can do

• Building large-scale code without proper tooling such as compile 
time error detection, refactoring capabilities, code completion, 
etc turned out to be very challenging as well
> JavaScript tools are not powerful enough compared to the ones in 

other OO programming languages (Java, C#)

• TypeScript is to the rescue
> TypeScript is a strongly-typed language, which enables compile-

time type checking and availability of tools
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TypeScript Provided Features over ES6

• Type annotations with Compile-time type checking
• Public/Protected/Private (for controlled access)
• Type inference
• Interfaces
• Generics
• Decorators
• ...
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TypeScript code with Compile-time Types

class User {
  id: number;
  firstName: string;
  lastName: string;

  constructor(id: number, firstName: string, lastName: string) {
    this.id = id;
    this.firstName = firstName;
    this.lastName = lastName;
  }
  getId() {
    return this.id;
  }
  getFirstName(): string {
    return this.firstName;
  }
  setFirstName(firstName: string) {
    this.firstName = firstName;
  }
  setLastName(lastName: string) : void {
    this.lastName = lastName;
  }
}



26

Public/Protected/Private (for controlled access)

class Student2 {
    private name: string;
    protected hobby: string;
    public age: number;   // default

    public setName(name: string){
        this.name = name;
    }
    
    getName(): string {
       return this.name;
    }
}
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Interfaces

interface User {
    username: string;
    password: string;
    confirmPassword?: string; // Optional property 
}

let user:User;

// This value does not satisfy the interface => Compilation error
// user = { anything: 'anything', anynumber: 5};

// These values do satisfy the interface
user = {username: 'sang', password: 'xyz', confirmPassword: 'xyz'};
user = {username: 'sang', password: 'xyz'};
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Interfaces

// Interfaces can also contain functions (without the function body 
// as it is a blueprint/ requirement)

interface CanDrive {
    sayGreeting: (message: string) => number;
    accelerate(speed: number): void;
    brake(): string;
}

let car: CanDrive = {
    // sayGreeting: function (message) {
    //     return message.length;
    // },
    sayGreeting: (message) => message.length,
    accelerate: function (speed: number) {
    },
    brake: function () {
        return "Code with Passion!";
    }
};
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Generics

let numberArray: Array<number>; // will only accept numbers

// Try to initialize it with strings

numberArray = ['test']; // => Error
numberArray = [1,2,3];
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Decorators

• Decorators are functions that are invoked with a prefixed @ 
symbol, and immediately followed by a class, parameter, 
method or property

• Decorators are proposed for a future version of JavaScript, but 
the Angular 2 team really wanted to use them, and they have 
been included in TypeScript
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Lab:Lab:

TypeScrpt CodeTypeScrpt Code
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