
1

 TypeScriptTypeScript

1

Sang ShinSang Shin
JPassion.comJPassion.com

““Code with Passion!”Code with Passion!”

2

Topics

• JavaScript language variants
• ES6
• TypeScipt

JavaScript LanguageJavaScript Language
VariantsVariants

4

JavaScript language variants

• There are many variants
> ES5, ES6, then ES7 (ES2016) TypeScript, AtScript, Dart,

CoffeeScript, ...

• ES6 and ES7 come with a set of new language features
• Today, however, ES5 is still the version that is most widely

supported by browsers
• Typescript is Microsoft’s extension of JavaScript that comes with

powerful type checking abilities and object oriented features
> TypeScript is superset of ES5, ES6, ES7
> TypeScript code gets transpiled into ES5 code for execution in

browsers

5

TypeScript is superset of JavaScript

• Any ES5 and ES6 JavaScript
programs are valid TypeScript
programs

• TypeScript provides extra
features such as Interfaces,
Generics over ES6 (We will
cover these in detail later on)

6

Angular 2 and TypeScript

• Angular 2 uses TypeScript as a language of choice
> You can build Angular 2 apps using JavaScript but you lose type

checking (and other language features) of TypeScript

• Most documentation and example codes in Angular 2 are based
on TypeScript

7

TypeScript Tools

• Transpiler
> tsc myTypeScriptCode.ts (to compile TS code to JS)
> node myTypeScriptCode.js (to execute JS code)

• Transpiler and executor in a single step
> [sudo] npm install -g ts-node
> ts-node myTypeScriptCode.ts (to compile and execute TS code)

8

Lab: Install Typescript

• Install node.js (if it has not been installed already)
• Install typescript
> [sudo] npm install -g typescript
> [sudo] npm install -g ts-node

• Run typescript code
> ts-node myCode

ES6 ES6

10

ES6 Features

• Classes
• let and const variables
• Arrow functions (fat arrow)
• Modules
• Promises
• Decorators
• for-of
• ...

11

ES5 (old-style) code of creating a Class

function User(id, firstName, lastName) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
}

User.prototype = {
 getFullName: function() {
 return return this.firstName + " " + this.lastName;
 }
};

12

ES6: Class

class User {
 id;
 firstName;
 lastName;

 constructor (id, firstName, lastName){
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 }

 getFullName(){
 return this.firstName + " " + this.lastName;
 }
}

let user1 = new User(1, "sang", "shin");
console.log(user1.getFullName());

13

ES6: Class Inheritance

class Person {
 ...
}

class Student extends Person {
 school;

 constructor (firstName, lastName, school){
 super(firstName, lastName);
 this.school = school;
 }

 getFullNameInfo(){
 return this.firstName + " " + this.lastName + " "
 + this.school;
 }
}

14

ES6: Variables – var, let, const

• ES6 provides a new way of specifying variables: let and const
> let and const create block scoped variables – they live and die

within {..} block
> let can be reassigned while const variable can’t be reassigned

• Before ES6, we only had var which create a function-scoped
variable

// ES5 example - “i” will be available after the loop
for (var i in items) {
}

// ES6 example - “i” will not be available after the loop
for (let i in items) {
 // i is available
}

15

ES6: Template Strings

// - write long inline string without having to use concatenation
// - defined opening and closing back ticks
let template1 = `
 <div>
 <h2>Rufferford's Travels</h2>
 <p>
 A most gripping tale of one dog's quest
 for more flavors.
 </p>
 </div>
`;

// You can also do string interpolation using
// ${expression} placeholders:
let x = 5;
let y = 10;
let template2 = `
 <div>The sum is ${ x + y }</div>
`;

16

ES6: JavaScript Modules

• ES6 standardized module system (over two existing module
systems – AMD and CommonJS)

• By default, anything you declare in a file in a ES6 project is not
available outside that file. You have to use the export keyword to
explicitly make it available

• Not the same thing as Angular module system

// teacher.ts
export class Teacher {
 ...
}

// main.ts
import { Teacher } from './teacher';

let teacher: Teacher = new Teacher('sang');
console.log(teacher.getName());

17

ES6: Promises

• Promises make it easier to write asynchronous code compared
to using callbacks

let myPromise = new Promise(
 (resolve, reject) => {
 setTimeout(() => resolve("JPassion.com"), 3000);
 });

myPromise.then(value => console.log(value))
 .catch(error => console.log(error));

18

ES6: Arrow Functions (Fat Arrow)

• More concise syntax for writing function expressions – no need
to type the function keyword, return keyword (it’s implicit in
arrow functions), and curly brackets

// ES5
var multiply1 = function (x, y) {
 return x * y;
}

// ES6 using Fat arrow
var multiply2 = (x, y) => x * y;

19

ES6: Arrow Functions (Fat Arrow)

• Fat arrow also changes the way “this” binds in functions
• Problem (when Fat Arrow is not used)
> In JavaScript, each function in JavaScript defines its own “this”

context object
> If the function is a callback function, “this” does not represents the

context you want – one workaround is to create a closure as
shown below

class MyClass5 {

 name: string = "Sang5";

 constructor() {
 var self = this; // create a closure
 setTimeout(function () {
 console.log(self.name); // use a closure as work-around
 }, 3000);
 }
}

20

ES6: Arrow Functions (Fat Arrow)

• Fat arrow does not create its own “this” context object - so there
is no need to use a workaround such as using a closure, instead
you can use this

class MyClass {

 name:string;

 constructor() {
 console.log("Expect Sang in 3 seconds");
 this.name = 'Sang';
 setTimeout(() => {
 console.log(this.name);
 }, 3000);
 }
}
let myClass = new MyClass();

21

Lab:Lab:

ES6 CodeES6 Code

TypeScript TypeScript

23

Why TypeScript?

• Building large-scale JavaScript application without using
compile-type checking turned out to be very challenging
> Even with all the testings you can do

• Building large-scale code without proper tooling such as compile
time error detection, refactoring capabilities, code completion,
etc turned out to be very challenging as well
> JavaScript tools are not powerful enough compared to the ones in

other OO programming languages (Java, C#)

• TypeScript is to the rescue
> TypeScript is a strongly-typed language, which enables compile-

time type checking and availability of tools

24

TypeScript Provided Features over ES6

• Type annotations with Compile-time type checking
• Public/Protected/Private (for controlled access)
• Type inference
• Interfaces
• Generics
• Decorators
• ...

25

TypeScript code with Compile-time Types

class User {
 id: number;
 firstName: string;
 lastName: string;

 constructor(id: number, firstName: string, lastName: string) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 }
 getId() {
 return this.id;
 }
 getFirstName(): string {
 return this.firstName;
 }
 setFirstName(firstName: string) {
 this.firstName = firstName;
 }
 setLastName(lastName: string) : void {
 this.lastName = lastName;
 }
}

26

Public/Protected/Private (for controlled access)

class Student2 {
 private name: string;
 protected hobby: string;
 public age: number; // default

 public setName(name: string){
 this.name = name;
 }

 getName(): string {
 return this.name;
 }
}

27

Interfaces

interface User {
 username: string;
 password: string;
 confirmPassword?: string; // Optional property
}

let user:User;

// This value does not satisfy the interface => Compilation error
// user = { anything: 'anything', anynumber: 5};

// These values do satisfy the interface
user = {username: 'sang', password: 'xyz', confirmPassword: 'xyz'};
user = {username: 'sang', password: 'xyz'};

28

Interfaces

// Interfaces can also contain functions (without the function body
// as it is a blueprint/ requirement)

interface CanDrive {
 sayGreeting: (message: string) => number;
 accelerate(speed: number): void;
 brake(): string;
}

let car: CanDrive = {
 // sayGreeting: function (message) {
 // return message.length;
 // },
 sayGreeting: (message) => message.length,
 accelerate: function (speed: number) {
 },
 brake: function () {
 return "Code with Passion!";
 }
};

29

Generics

let numberArray: Array<number>; // will only accept numbers

// Try to initialize it with strings

numberArray = ['test']; // => Error
numberArray = [1,2,3];

30

Decorators

• Decorators are functions that are invoked with a prefixed @
symbol, and immediately followed by a class, parameter,
method or property

• Decorators are proposed for a future version of JavaScript, but
the Angular 2 team really wanted to use them, and they have
been included in TypeScript

31

Lab:Lab:

TypeScrpt CodeTypeScrpt Code

32

 Code with Passion!Code with Passion!
JPassion.comJPassion.com

32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

