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Agenda
● What is Java EE?
● Evolution of Enterprise Application Development 

Frameworks
● Why Java EE?
● Java EE Platform Architecture
● How to get started
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What is Java EE?
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What Is the Java EE?

 Open and standard based platform for
 developing, deploying and managing 
 n-tier, Web-enabled, server-centric, and 

component-based enterprise 
applications
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The Java™ Platform

High-End
Server

Java Technology 
Enabled Desktop

Workgroup
Server

Java Technology 
Enabled Devices
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The JavaTM Platform

Optional
Packages

Java 
Enterprise

Edition
(Java EE)

Java 
Standard
Edition

(Java SE)

JVM

Java 
Card 
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CardVM
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Packages

Personal
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Personal 
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Foundation Profile
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Java Platform Micro Edition
(Java ME)

* Under development in JCP
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Evolution ofEvolution of
Enterprise ApplicationEnterprise Application
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Evolution of Enterprise 
Application Framework
● Single tier 
● Two tier
● Three tier 

– RPC based
– Remote object based

● Three tier (HTML browser and Web server)
● Proprietary application server
● Standard application server



10

About Enterprise Applications 
● Things that make up an enterprise 

application
– Presentation logic
– Business logic
– Data access logic (and data model)
– System services

● The evolution of enterprise application 
framework reflects
– How flexibly you want to make changes
– Where the system services are coming from
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Single Tier (Mainframe-based)

● Dumb terminals are directly connected to 
mainframe

● Centralized model (as opposed distributed 
model)

● Presentation, business logic, and data 
access are intertwined in one monolithic 
mainframe application
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Single-Tier: Pros & Cons
● Pros:

– No client side management is required
– Data consistency is easy to achieve

● Cons:
– Functionality (presentation, data model, business 

logic) intertwined, difficult for updates and 
maintenance and code reuse
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Two-Tier

● Fat clients talking to back end 
database
– SQL queries sent, raw data returned

● Presentation,Business logic and Data 
Model processing logic in client 
application

Database

SQL 
request

SQL 
response
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Two-Tier
● Pro:

– DB product independence (compared to single-tier model)
● Cons:

– Presentation, data model, business logic are intertwined (at 
client side), difficult for updates and maintenance

– Data Model is “tightly coupled” to every client: If DB 
Schema changes, all clients break

– Updates have to be deployed to all clients making System 
maintenance nightmare

– DB connection for every client, thus difficult to scale
– Raw data transferred to client for processing causes high 

network traffic



15

Three-Tier (RPC based)

● Thinner client: business & data model separated 
from presentation
– Business logic and data access logic reside in 

middle tier server while client handles presentation
● Middle tier server is now required to handle system 

services
– Concurrency control, threading, transaction, security, 

persistence, multiplexing, performance, etc.

Database

SQL 
request

SQL 
response

RPC response

RPC request
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Three-tier (RPC based): Pros & Cons
● Pro:

– Business logic can change more flexibly than 2-tier 
model 

● Most business logic reside in the middle-tier server
● Cons:

– Complexity is introduced in the middle-tier server
– Client and middle-tier server is more tightly-

coupled (than the three-tier object based model) 
– Code is not really reusable (compared to object 

model based)
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Three-Tier (Remote Object based)

● Business logic and data model captured in 
objects
– Business logic and data model are now described 

in “abstraction” (interface language)
● Object models used: CORBA, RMI, DCOM

– Interface language in CORBA is IDL
– Interface language in RMI is Java interface

Database

SQL 
request
SQL 
response

Object 
response

Object request
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Three-tier (Remote Object 
based): Pros & Cons
● Pro:

– More loosely coupled than RPC model
– Code could be more reusable

● Cons:
– Complexity in the middle-tier still need to be 

addressed 
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Three-Tier (Web Server)

● Browser handles presentation logic
● Browser talks Web server via HTTP protocol
● Business logic and data model are handled by 

“dynamic contents generation” technologies 
(CGI, Servlet/JSP, ASP)

Database

SQL 
request

SQL 
response

HTML response

WEB 
Server

HTML request
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Three-tier (Web Server based): 
Pros & Cons
● Pro:

– Ubiquitous client types
– Zero client management 
– Support various client devices

● J2ME-enabled cell-phones
● Cons:

– Complexity in the middle-tier still need to be 
addressed 
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Trends
● Moving from single-tier or two-tier to multi-

tier architecture
● Moving from monolithic model to object-

based application model
● Moving from application-based client to 

HTML-based client
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Multi-tier
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Object-based

       Monolithic vs. Object-based
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Outstanding Issues & Solution
● Complexity at the middle tier server still remains
● Duplicate system services still need to be 

provided for the majority of enterprise 
applications
– Concurrency control, Transactions
– Load-balancing, Security
– Resource management, Connection pooling

● How to solve this problem?  
– Commonly shared container that handles the above 

system services
– Proprietary versus Open-standard based
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Proprietary Solution
● Use "component and container" model 

– Components captures business logic
– Container provides system services  

● The contract between components and 
container is defined in a well-defined but 
with proprietary manner

● Problem of proprietary solution: Vendor 
lock-in

● Example: Tuxedo, .NET
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Open and Standard Solution
● Use "component and container" model in 

which container provides system services 
in a well-defined and as industry standard

● Java EE is that standard that also 
provides portability of code because it is 
based on Java technology and standard-
based Java programming APIs
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Why Java EE?Why Java EE?
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Platform Value to Developers
● Can use any Java EE implementation for 

development and deployment 
– Use production-quality standard implementation 

which is free for development/deployment  
– Use high-end commercial Java EE products for 

scalability and fault-tolerance
● Vast amount of Java EE community 

resources
– Many Java EE related books, articles, tutorials, 

quality code you can use, best practice guidelines, 
design patterns etc.

● Can use off-the-shelf 3rd-party business 
components
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Platform Value to Vendors
● Vendors work together on specifications and 

then compete in implementations
– In the areas of Scalability, Performance, Reliability, 

Availability, Management and development tools, and 
so on

● Freedom to innovate while maintaining the 
portability of applications

● Do not have create/maintain their own 
proprietary APIs
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Platform Value to Business 
Customers
● Application portability 
● Many implementation choices are possible 

based on various requirements
– Price (free to high-end), scalability (single CPU to 

clustered model), reliability, performance, tools, and 
more

– Best of breed of applications and platforms
● Large developer pool
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Java EE APIs &Java EE APIs &
TechnologiesTechnologies
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Java EE 1.4 APIs and Technologies
● J2SE 1.4 (improved)
● JAX-RPC (new)
● Web Service for Java 

EE
● Java EE 

Management
● Java EE Deployment
● JMX 1.1
● JMS 1.1
● JTA 1.0

● Servlet 2.4
● JSP 2.0
● EJB 2.1
● JAXR
● Connector 1.5
● JACC
● JAXP 1.2
● JavaMail 1.3
● JAF 1.0
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Java EE 5

● JAX-WS 2.0 & JSR 181
● Java Persistence

● EJB 3.0
● JAXB 2.0
● JavaSever Faces 1.2 – new to Platform
● JSP 2.1 – Unification w/ JSF 1.2
● StAX – Pull Parser – new to Platform
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J2EE is an End-to-EndJ2EE is an End-to-End
ArchitectureArchitecture
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The Java EE Platform 
Architecture

B2B
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Application Server
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Information
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Applications
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HTML/XML
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N-tier Java EE Architecture

Web Tier EJB Tier
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Java EE Java EE 
Component & ContainerComponent & Container

ArchitectureArchitecture



39

JN
D

I

J2SE

JM
S

R
M

I/I
IO

P

JD
B

C

DatabaseDatabase

App
Client
App

Client

App Client 
Container
App Client 
Container

HTTP/
HTTPS
HTTP/
HTTPS

J2SE

RMIRMI

J2SE

JN
D

I

JM
S

R
M

I/I
IO

P

JD
B

C

JT
A JavaMail

JAF JN
D

I

JM
S

R
M

I/I
IO

P

JD
B

C

JT
A

JavaMail

JAF

HTTP/
HTTPS
HTTP/
HTTPS

Applet ContainerApplet Container

AppletApplet JSPJSP ServletServlet EJBEJB

Web ContainerWeb Container EJB ContainerEJB Container

RMIRMI

J2SEJ2SE

Java EE Containers & Components 



40

Components
Handle

Containers and Components

 Concurrency
 Security
 Availability
 Scalability
 Persistence
 Transaction
 Life-cycle 

management
 Management

 Concurrency
 Security
 Availability
 Scalability
 Persistence
 Transaction
 Life-cycle 

management
 Management

 Presentation
 Business Logic
 Presentation
 Business Logic

Containers
Handle
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Containers & Components 

● Containers do their work invisibly
– No complicated APIs
– They control by interposition

● Containers implement Java EE
– Look the same to components 
– Vendors making the containers have great 

freedom to innovate
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Java EE ApplicationJava EE Application
Development & Deployment Development & Deployment 

Life CycleLife Cycle
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Java EE Application 
Development Lifecycle

● Write and compile component code
– Servlet, JSP, EJB

● Write deployment descriptors for 
components
– From Java EE 5, you can use annotations

● Assemble components into ready-to-
deployable package

● Deploy the package on a server
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Creation Assembly Deployment
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Processed 
by Deployer

Deploy

Enterprise
Components
Enterprise

Components

J2EE ContainerJ2EE Container

J2EE APPJ2EE Modules

Life-cycle Illustration
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Java EE Development Roles

● Component provider
– Bean provider

● Application assembler
● Deployer
● Platform provider

– Container provider
● Tools provider
● System administrator
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The Deployment Descriptor
● Gives the container instructions on how 

to manage and control behaviors of the 
Java EE components
– Transaction
– Security
– Persistence

● Allows declarative customization (as 
opposed to programming 
customization)
– XML file

● Enables portability of code
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Java EE ApplicationJava EE Application
AnatomiesAnatomies
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DB & EIS
Resources

Browser

Stand-alone

Web ServerWeb Server EJB ServerEJB Server

Web ServerWeb Server EJB ServerEJB Server

Possible Java EE Application 
Anatomies
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Java EE Application Anatomies
● 4-tier Java EE applications
– HTML client, JSP/Servlets, EJB, JDBC/Connector

● 3-tier Java EE applications
– HTML client, JSP/Servlets, JDBC

● 3-tier Java EE applications
– EJB standalone applications, EJB, JDBC/Connector

● B2B Enterprise applications
– Java EE platform to Java EE platform through the 

exchange of JMS or XML-based messages
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Which One to Use?
● Depends on several factors

– Requirements of applications
– Availability of EJB tier
– Availability of developer resource
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How to Get StartedHow to Get Started
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Step1: For Beginners and 
Intermediate Java EE Programmers
● Follow along with this course
● Start using Java EE IDE of your choice 
● Try open source IDE's

– NetBeans IDE  (netbeans.org)
– Eclipse
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Step2: Next Step (For Advanced Java 
EE Programmers) 
● Learn practical open-source solutions

– Spring framework (for light-weight framework)
– Hibernate (for O/R mapping)
– JDO (for transparent persistence)
– Struts, WebWork, Tapestry (for Web-tier 

frameworks)
– JUnit (for unit testing)
– Log4j (for logging)
– Many more
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Summary &Summary &
ResourcesResources 
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Summary
● Java EE is the platform of choice for 

development and deployment of n-tier, 
web-based, transactional, component-
based enterprise applications

● Java EE is standard-based 
architecture

● Java EE is all about community
● Java EE evolves according to the 

needs of the industry
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