
1

Java EE OverviewJava EE Overview

Sang ShinSang Shin
www.JPassion.comwww.JPassion.com

““Learn with JPassion!”Learn with JPassion!”

1

2

Agenda
● What is Java EE?
● Evolution of Enterprise Application Development

Frameworks
● Why Java EE?
● Java EE Platform Architecture
● How to get started

3

What is Java EE?

4

Challenges
Portability
Diverse
Environments
Time-to-market
Core Competence
Assembly
Integration

Challenges
Portability
Diverse
Environments
Time-to-market
Core Competence
Assembly
Integration

Key
Technologies
J2SE™

J2EE™

JMS
Servlet
JSP
Connector

XML
Data
Binding
XSLT

Key
Technologies
J2SE™

J2EE™

JMS
Servlet
JSP
Connector

XML
Data
Binding
XSLT

Products
App Servers
Web Servers
Components
Databases
Object to DB
tools

Legacy
Systems

Databases
TP Monitors
EIS Systems

Enterprise Computing

5

What Is the Java EE?

 Open and standard based platform for
 developing, deploying and managing
 n-tier, Web-enabled, server-centric, and

component-based enterprise
applications

6

The Java™ Platform

High-End
Server

Java Technology
Enabled Desktop

Workgroup
Server

Java Technology
Enabled Devices

7

The JavaTM Platform

Optional
Packages

Java
Enterprise

Edition
(Java EE)

Java
Standard
Edition

(Java SE)

JVM

Java
Card
APIs

CardVM

Optional
Packages

Personal
 Basis Profile

Personal
Profile

Foundation Profile

CDC

MIDP

CLDC

KVM

Java Platform Micro Edition
(Java ME)

* Under development in JCP

8

Evolution ofEvolution of
Enterprise ApplicationEnterprise Application

FrameworksFrameworks

9

Evolution of Enterprise
Application Framework
● Single tier
● Two tier
● Three tier

– RPC based
– Remote object based

● Three tier (HTML browser and Web server)
● Proprietary application server
● Standard application server

10

About Enterprise Applications
● Things that make up an enterprise

application
– Presentation logic
– Business logic
– Data access logic (and data model)
– System services

● The evolution of enterprise application
framework reflects
– How flexibly you want to make changes
– Where the system services are coming from

11

Single Tier (Mainframe-based)

● Dumb terminals are directly connected to
mainframe

● Centralized model (as opposed distributed
model)

● Presentation, business logic, and data
access are intertwined in one monolithic
mainframe application

12

Single-Tier: Pros & Cons
● Pros:

– No client side management is required
– Data consistency is easy to achieve

● Cons:
– Functionality (presentation, data model, business

logic) intertwined, difficult for updates and
maintenance and code reuse

13

Two-Tier

● Fat clients talking to back end
database
– SQL queries sent, raw data returned

● Presentation,Business logic and Data
Model processing logic in client
application

Database

SQL
request

SQL
response

14

Two-Tier
● Pro:

– DB product independence (compared to single-tier model)
● Cons:

– Presentation, data model, business logic are intertwined (at
client side), difficult for updates and maintenance

– Data Model is “tightly coupled” to every client: If DB
Schema changes, all clients break

– Updates have to be deployed to all clients making System
maintenance nightmare

– DB connection for every client, thus difficult to scale
– Raw data transferred to client for processing causes high

network traffic

15

Three-Tier (RPC based)

● Thinner client: business & data model separated
from presentation
– Business logic and data access logic reside in

middle tier server while client handles presentation
● Middle tier server is now required to handle system

services
– Concurrency control, threading, transaction, security,

persistence, multiplexing, performance, etc.

Database

SQL
request

SQL
response

RPC response

RPC request

16

Three-tier (RPC based): Pros & Cons
● Pro:

– Business logic can change more flexibly than 2-tier
model

● Most business logic reside in the middle-tier server
● Cons:

– Complexity is introduced in the middle-tier server
– Client and middle-tier server is more tightly-

coupled (than the three-tier object based model)
– Code is not really reusable (compared to object

model based)

17

Three-Tier (Remote Object based)

● Business logic and data model captured in
objects
– Business logic and data model are now described

in “abstraction” (interface language)
● Object models used: CORBA, RMI, DCOM

– Interface language in CORBA is IDL
– Interface language in RMI is Java interface

Database

SQL
request
SQL
response

Object
response

Object request

18

Three-tier (Remote Object
based): Pros & Cons
● Pro:

– More loosely coupled than RPC model
– Code could be more reusable

● Cons:
– Complexity in the middle-tier still need to be

addressed

19

Three-Tier (Web Server)

● Browser handles presentation logic
● Browser talks Web server via HTTP protocol
● Business logic and data model are handled by

“dynamic contents generation” technologies
(CGI, Servlet/JSP, ASP)

Database

SQL
request

SQL
response

HTML response

WEB
Server

HTML request

20

Three-tier (Web Server based):
Pros & Cons
● Pro:

– Ubiquitous client types
– Zero client management
– Support various client devices

● J2ME-enabled cell-phones
● Cons:

– Complexity in the middle-tier still need to be
addressed

21

Trends
● Moving from single-tier or two-tier to multi-

tier architecture
● Moving from monolithic model to object-

based application model
● Moving from application-based client to

HTML-based client

22

Multi-tier

 Single-tier vs. Multi-tier

 No separation
among presentation,
business logic,
database

 Hard to maintain

 No separation
among presentation,
business logic,
database

 Hard to maintain

 Separation among
presentation,
business logic,
database

 More flexible to
change, i.e.
presentation can
change without
affecting other tiers

 Separation among
presentation,
business logic,
database

 More flexible to
change, i.e.
presentation can
change without
affecting other tiers

 Single tier

23

Object-based

 Monolithic vs. Object-based

 1 Binary file
 Recompiled,

relinked,
redeployed every
time there is a
change

 1 Binary file
 Recompiled,

relinked,
redeployed every
time there is a
change

 Pluggable parts
 Reusable
 Enables better

design
 Easier update
 Implementation

can be separated
from interface

 Only interface is
published

 Pluggable parts
 Reusable
 Enables better

design
 Easier update
 Implementation

can be separated
from interface

 Only interface is
published

 Monolithic

24

Outstanding Issues & Solution
● Complexity at the middle tier server still remains
● Duplicate system services still need to be

provided for the majority of enterprise
applications
– Concurrency control, Transactions
– Load-balancing, Security
– Resource management, Connection pooling

● How to solve this problem?
– Commonly shared container that handles the above

system services
– Proprietary versus Open-standard based

25

Proprietary Solution
● Use "component and container" model

– Components captures business logic
– Container provides system services

● The contract between components and
container is defined in a well-defined but
with proprietary manner

● Problem of proprietary solution: Vendor
lock-in

● Example: Tuxedo, .NET

26

Open and Standard Solution
● Use "component and container" model in

which container provides system services
in a well-defined and as industry standard

● Java EE is that standard that also
provides portability of code because it is
based on Java technology and standard-
based Java programming APIs

27

Why Java EE?Why Java EE?

28

Platform Value to Developers
● Can use any Java EE implementation for

development and deployment
– Use production-quality standard implementation

which is free for development/deployment
– Use high-end commercial Java EE products for

scalability and fault-tolerance
● Vast amount of Java EE community

resources
– Many Java EE related books, articles, tutorials,

quality code you can use, best practice guidelines,
design patterns etc.

● Can use off-the-shelf 3rd-party business
components

29

Platform Value to Vendors
● Vendors work together on specifications and

then compete in implementations
– In the areas of Scalability, Performance, Reliability,

Availability, Management and development tools, and
so on

● Freedom to innovate while maintaining the
portability of applications

● Do not have create/maintain their own
proprietary APIs

30

Platform Value to Business
Customers
● Application portability
● Many implementation choices are possible

based on various requirements
– Price (free to high-end), scalability (single CPU to

clustered model), reliability, performance, tools, and
more

– Best of breed of applications and platforms
● Large developer pool

31

Java EE APIs &Java EE APIs &
TechnologiesTechnologies

32

Java EE 1.4 APIs and Technologies
● J2SE 1.4 (improved)
● JAX-RPC (new)
● Web Service for Java

EE
● Java EE

Management
● Java EE Deployment
● JMX 1.1
● JMS 1.1
● JTA 1.0

● Servlet 2.4
● JSP 2.0
● EJB 2.1
● JAXR
● Connector 1.5
● JACC
● JAXP 1.2
● JavaMail 1.3
● JAF 1.0

33

Java EE 5

● JAX-WS 2.0 & JSR 181
● Java Persistence

● EJB 3.0
● JAXB 2.0
● JavaSever Faces 1.2 – new to Platform
● JSP 2.1 – Unification w/ JSF 1.2
● StAX – Pull Parser – new to Platform

34

J2EE is an End-to-EndJ2EE is an End-to-End
ArchitectureArchitecture

35

The Java EE Platform
Architecture

B2B
Applications

B2C
Applications

Web
Services

Wireless
Applications

Application Server
Enterprise
Information

Systems

Existing
Applications

36

Client

Client

Client

Client

Client

Client
Tier

Enterprise
Information

Tier
Middle

Tier

Enterprise
Information

Systems (EIS):
Relational
Database,
Legacy

Applications,
ERP Systems

Enterprise
JavaBeans™
Enterprise

JavaBeans™

Enterprise
JavaBeans
Enterprise
JavaBeans

Other Services:
JNDI, JMS,
JavaMail™

Other Services:
JNDI, JMS,
JavaMail™

J2EE
Application

Server

Web
Server
JSP,

Servlets

Firewall

Java EE is End-to-End Solution

HTML/XML

37

N-tier Java EE Architecture

Web Tier EJB Tier

38

Java EE Java EE
Component & ContainerComponent & Container

ArchitectureArchitecture

39

JN
D

I

J2SE

JM
S

R
M

I/I
IO

P

JD
B

C

DatabaseDatabase

App
Client
App

Client

App Client
Container
App Client
Container

HTTP/
HTTPS
HTTP/
HTTPS

J2SE

RMIRMI

J2SE

JN
D

I

JM
S

R
M

I/I
IO

P

JD
B

C

JT
A JavaMail

JAF JN
D

I

JM
S

R
M

I/I
IO

P

JD
B

C

JT
A

JavaMail

JAF

HTTP/
HTTPS
HTTP/
HTTPS

Applet ContainerApplet Container

AppletApplet JSPJSP ServletServlet EJBEJB

Web ContainerWeb Container EJB ContainerEJB Container

RMIRMI

J2SEJ2SE

Java EE Containers & Components

40

Components
Handle

Containers and Components

 Concurrency
 Security
 Availability
 Scalability
 Persistence
 Transaction
 Life-cycle

management
 Management

 Concurrency
 Security
 Availability
 Scalability
 Persistence
 Transaction
 Life-cycle

management
 Management

 Presentation
 Business Logic
 Presentation
 Business Logic

Containers
Handle

41

Containers & Components

● Containers do their work invisibly
– No complicated APIs
– They control by interposition

● Containers implement Java EE
– Look the same to components
– Vendors making the containers have great

freedom to innovate

42

Java EE ApplicationJava EE Application
Development & Deployment Development & Deployment

Life CycleLife Cycle

43

Java EE Application
Development Lifecycle

● Write and compile component code
– Servlet, JSP, EJB

● Write deployment descriptors for
components
– From Java EE 5, you can use annotations

● Assemble components into ready-to-
deployable package

● Deploy the package on a server

44

Creation Assembly Deployment

Created by
Component
Developer

Created by
Component
Developer

Assembled
and Augmented
by Application

Assembler

Assembled
and Augmented
by Application

Assembler

Processed
by Deployer
Processed
by Deployer

Deploy

Enterprise
Components
Enterprise

Components

J2EE ContainerJ2EE Container

J2EE APPJ2EE Modules

Life-cycle Illustration

45

Java EE Development Roles

● Component provider
– Bean provider

● Application assembler
● Deployer
● Platform provider

– Container provider
● Tools provider
● System administrator

46

The Deployment Descriptor
● Gives the container instructions on how

to manage and control behaviors of the
Java EE components
– Transaction
– Security
– Persistence

● Allows declarative customization (as
opposed to programming
customization)
– XML file

● Enables portability of code

47

Java EE ApplicationJava EE Application
AnatomiesAnatomies

48

DB & EIS
Resources

Browser

Stand-alone

Web ServerWeb Server EJB ServerEJB Server

Web ServerWeb Server EJB ServerEJB Server

Possible Java EE Application
Anatomies

49

Java EE Application Anatomies
● 4-tier Java EE applications
– HTML client, JSP/Servlets, EJB, JDBC/Connector

● 3-tier Java EE applications
– HTML client, JSP/Servlets, JDBC

● 3-tier Java EE applications
– EJB standalone applications, EJB, JDBC/Connector

● B2B Enterprise applications
– Java EE platform to Java EE platform through the

exchange of JMS or XML-based messages

50

Which One to Use?
● Depends on several factors

– Requirements of applications
– Availability of EJB tier
– Availability of developer resource

51

How to Get StartedHow to Get Started

52

Step1: For Beginners and
Intermediate Java EE Programmers
● Follow along with this course
● Start using Java EE IDE of your choice
● Try open source IDE's

– NetBeans IDE (netbeans.org)
– Eclipse

53

Step2: Next Step (For Advanced Java
EE Programmers)
● Learn practical open-source solutions

– Spring framework (for light-weight framework)
– Hibernate (for O/R mapping)
– JDO (for transparent persistence)
– Struts, WebWork, Tapestry (for Web-tier

frameworks)
– JUnit (for unit testing)
– Log4j (for logging)
– Many more

54

Summary &Summary &
ResourcesResources

55

Summary
● Java EE is the platform of choice for

development and deployment of n-tier,
web-based, transactional, component-
based enterprise applications

● Java EE is standard-based
architecture

● Java EE is all about community
● Java EE evolves according to the

needs of the industry

56

 Thank you!Thank you!

Sang ShinSang Shin
Michèle GarocheMichèle Garoche

http://www.javapassion.comhttp://www.javapassion.com
““Learning is fun!”Learning is fun!”

99

	Slide 1
	Agenda
	Slide 3
	Enterprise Computing
	What Is the Java™ 2 Platform, Enterprise Edition?
	The Java™ 2 Platform
	The JavaTM 2 Platform
	Slide 8
	Slide 9
	Slide 10
	Mainframe or Single Tier
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Connector Integration with Other services
	J2EE is End-to-End Solution
	where
	Slide 38
	J2EE Containers & Components
	Containers and Components
	J2EE Containers (cont’d)
	Slide 42
	J2EE Application Lifecycle
	Lifecycle Illustration
	J2EE Roles
	The Deployment Descriptor
	Slide 47
	BluePrint Scenarios
	Core BluePrint Scenarios
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

