
StAXStAX
 (Streaming API for (Streaming API for

XML)XML)

Sang ShinSang Shin
JPassion.comJPassion.com

““Learn with Passion!”Learn with Passion!”

1

2

• Pull parsing vs. Push parsing
• What is and Why StAX (Streaming API for XML)?

• Iterator API
> XMLEventReader, XMLEventWriter

• Cursor API
> XMLStreamReader, XMLStreamWriter

• StreamFilter API
• Choosing between Cursor and Iterator APIs

Agenda

3

Pull-parsing vs.Pull-parsing vs.
Push-parsingPush-parsing

4

Pull Parsing vs. Push Parsing
• Pull parsing refers to a programming model in which a

client application calls methods on an XML parser when
it needs to interact with an XML infoset--that is, the client
only gets (pulls) XML data when it explicitly asks for it.

• Push parsing refers to a programming model in which an
XML parser sends (pushes) XML data to the client as the
parser encounters elements in an XML infoset--that is,
the parser sends the data whether or not the client is
ready to use it at that time.

5

Advantages of Pull Parsing
• With pull parsing, the client has the complete control

> The client can start, proceed, pause, and resume the parsing
process

> By contrast, with push processing, the parser controls the
application thread

6

Advantages of Pull Parsing
• Pull clients can read multiple documents at one time

with a single thread.
• A StAX pull parser can filter XML documents such

that elements unnecessary to the client can be
ignored
> In push parsing, application has to receive all elements

since there is no filtering scheme

• Pull parsing is easier to use than DOM for writing out

7

What is and Why What is and Why
StAX?StAX?

8

What is StAX?
• It is a streaming (as opposed to in-memory tree of DOM)

Java-based, event-driven, pull-parsing API (as opposed to
push-parsing of SAX) for reading and writing XML
documents.

• StAX enables you to create a bidirectional XML parser
that is fast, relatively easy to program, and has a light
memory footprint.

• StAX is the latest API in the JAXP family, and provides an
alternative to SAX and DOM for developers looking to do
high-performance stream filtering, processing, and
modification, particularly with low memory

9

Why StAX?

• Supports Pull parsing
• Gives "parsing control” to the programmer

> This allows the programmer to ask for the next event (pull
the event)

• StAX was created to address limitations in SAX and
DOM

10

StAX vs SAX
• StAX is pull parsing while SAX is push parsing
• StAX-enabled clients are generally easier to code

than SAX clients
• StAX is a bidirectional API, meaning that it can both

read and write XML documents.
> SAX is read only, so another API is needed if you want to

write XML documents.

11

Overall Comparison among
Parsing APIs

12

Two Types of APIsTwo Types of APIs

13

Two Types of StAX API
• Iterator API

> Convenient, easy to use

• Cursor API
> Fast, low-level

14

Iterator APIIterator API

15

Iterator API
• Represents an XML document stream as a set of

discrete event objects
• These events are pulled by the application and

provided by the parser in the order in which they are
read in the source XML document

16

Iterator API Classes

• XMLEvent
• XMLEventReader
• XMLEventWriter

17

XMLEvent Types
• StartDocument
• StartElement, EndElement, Characters
• EntityReference, ProcessingInstruction
• Comment, EndDocument, DTD
• Attribute, Namespace

18

XMLEventReader APIXMLEventReader API

19

XMLEventReader

public interface XMLEventReader extends Iterator {

 public XMLEvent nextEvent() throws XMLStreamException;

 public boolean hasNext();

 public XMLEvent peek() throws XMLStreamException;

 ...

}

20

XMLEventReader (from “event” example app)

// Get the factory instance first.
XMLInputFactory factory = XMLInputFactory.newInstance();
System.out.println("FACTORY: " + factory);

// Create the XMLEventReader, pass the filename for
// any relative resolution
XMLEventReader r = factory.createXMLEventReader(
 filename,
 new FileInputStream(filename));

// Programmer asks for events when s/he wants it (as opposed to
// given by parser as in the case of SAX)
while (r.hasNext()) {
 XMLEvent e = r.nextEvent();
 System.out.println("Event -> " + e.toString());
}

21

XMLEventWriter XMLEventWriter
APIAPI

22

XMLEventWriter

• Stax has writing APIs
> The XMLEventWriter class extends from

XMLEventConsumer interface

• XMLEventWriter acts as a consumer which can
consume events

• Event producer (XMLEventReader) and Event
consumer (XMLEventWriter) mechanism makes it
possible to read XML from one stream sequentially
and simultaneously write to other stream

23

XMLEventWriter
public interface XMLEventWriter {

 public void flush() throws XMLStreamException;

 public void close() throws XMLStreamException;

 public void add(XMLEvent e) throws XMLStreamException;

 public void add(Attribute attribute) throws
XMLStreamException;

 ...

}

24

XMLEventWriter (from “readwrite” example app)

EventProducerConsumer ms = new EventProducerConsumer();
XMLEventReader reader = XMLInputFactory.newInstance()
 .createXMLEventReader(new java.io.FileInputStream(args[0]));
XMLEventWriter writer = XMLOutputFactory.newInstance()
 .createXMLEventWriter(System.out);

while (reader.hasNext()) {
 XMLEvent event = (XMLEvent) reader.next();

 //write this event to Consumer (XMLOutputStream)
 if (event.getEventType() == event.CHARACTERS) {
 // See the code of getNewCharactersEvent(..) in next slide
 writer.add(ms.getNewCharactersEvent(event.asCharacters()));
 } else {
 writer.add(event);
 }
}
writer.flush();

// See next slide for getNewCharactersEvent(..)

25

XMLEventWriter (from “readwrite” example app)

 /** New Character event (with text containing current time) is
 * created using XMLEventFactory in case the
 * Characters event passed matches the criteria.
 *
 * @param Characters Current character event.
 * return Characters New Characters event.
 */
 Characters getNewCharactersEvent(Characters event) {
 if (event.getData().equalsIgnoreCase("The First and Last Freedom")) {
 return m_eventFactory.createCharacters(
 Calendar.getInstance().getTime().toString());
 } //else return the same event
 else {
 return event;
 }
 }

26

Lab:Lab:

Exercise 1: XMLEventReaderExercise 1: XMLEventReader
Exercise 2: XMLEventWriter Exercise 2: XMLEventWriter

4346_ws_jaxp_stax.zip4346_ws_jaxp_stax.zip

27

Cursor APICursor API

28

Caveat of Iterator API
• While the iterator-style API is convenient and easy to

use, it involves some overhead
> The parser needs to create event objects

29

Cursor API over Iterator API
• For applications where high performance is

paramount, you may want to use the cursor-based
API instead

• The type XMLStreamReader features a next()
method that delivers integer values (instead of event
objects) representing the event type.

30

Cursor API
• Represents a cursor with which you can walk an

XML document from beginning to end.
• This cursor can point to one thing at a time, and

always moves forward, never backward, usually one
infoset element at a time

31

XMLStreamReaderXMLStreamReader

32

Cursor API - XMLStreamReader
• XMLStreamReader

> Includes accessor methods for all possible information
retrievable from the XML Information model including
document encoding, element names, attributes,
namespaces, text nodes, start tags, comments,
processing instructions, document boundaries, and so
forth

• XMLStreamWriter
> Provides methods that correspond to StartElement and

EndElement event types

33

XMLStreamReader Methods
public QName getName()
public String getLocalName()
public String getNamespaceURI()
public String getText()
public String getElementText()
public int getEventType()
public Location getLocation()
public int getAttributeCount()
public QName getAttributeName(int index)
public String getAttributeValue(String namespaceURI, String localName)
// There are more

34

Caveats
• Not all of the getter methods work all the time

> For instance, if the cursor is positioned on an end-tag,
then you can get the name and namespace but not the
attributes or the element text.

> If the cursor is positioned on a text node, then you can get
the text but not the name, namespace, prefix, or attributes.
Text nodes just don't have these things.

• Calling an inapplicable method normally returns null.

35

getEventType() method

• To find out what kind of node the parser is currently
positioned on, you call the getEventType() method,
which returns one of these seventeen int constants:
> XMLStreamConstants.START_DOCUMENT
> XMLStreamConstants.END_DOCUMENT
> XMLStreamConstants.START_ELEMENT
> XMLStreamConstants.END_ELEMENT
> XMLStreamConstants.ATTRIBUTE
> XMLStreamConstants.CHARACTERS
> XMLStreamConstants.CDATA
> XMLStreamConstants.SPACE
> ...

36

next() method

• Get next parsing event
> Returns integer code corresponding to the next parsing

event

37

Example: XMLStreamReader
(from “cursor” example app)

XMLStreamReader parser = xmlif.createXMLStreamReader(
 filename, // System id of the stream
 new FileInputStream(filename)); // File to read
while (true) {
 // Get the integer code corresponding to the current event
 int event = parser.next();

 if (event == XMLStreamConstants.END_DOCUMENT) {
 parser.close();
 break;
 }
 if (event == XMLStreamConstants.START_ELEMENT) {
 System.out.println(parser.getLocalName());
 }
}

38

Optimized use of XMLStreamReader

• Since the client application controls the process, it's
easy to write separate methods for different elements

• For example, you could write one method that
handles headers, one that handles img elements,
one that handles tables, one that handles meta tags,
and so forth.

39

Example: Usage pattern
// Process an html element that contains head and
// body child elements
public void processHtml(XmlPullParser parser) {
 while (true) {
 int event = parser.next();
 if (event == XMLStreamConstants.START_ELEMENT) {
 if (parser.getLocalName().equals("head"))
 processHead(parser);
 else if (parser.getLocalName().equals("body"))
 processBody(parser)
 }
 else if (event == XMLStreamConstants.END_ELEMENT) {
 return;
 }
 }
}

40

XMLStreamWriterXMLStreamWriter

41

XMLStreamWriter
public interface XMLStreamWriter {

 public void writeStartElement(String localName)

 throws XMLStreamException;

 public void writeEndElement()

 throws XMLStreamException;

 public void writeCharacters(String text)

 throws XMLStreamException;

 // ... other methods not shown

}

42

Ease of Development (Compared DOM)

• Think XML
XMLStreamWriter xtw =
createXMLStreamWriter();
xtw.writeStartDocument(
"utf-8", "1.0");
writeStartElement(
"hello");
xtw.writeDefaultNamespace

("http://samples");
xtw.writeCharacters(
"this crazy");
xtw.writeEmptyElement(
"world");
xtw.writeEndElement();
xtw.writeEndDocument();

• For XML

<?xml
version="1.0"
encoding="utf-
8"?>

<hello
xmlns="http://s
amples">this
crazy<world/>

</hello>

43

Example: XMLStreamWriter (from
writer example app)

XMLStreamWriter writer = xmlif.createXMLStreamWriter(
 filename,
 new FileOutputStream(filename));

writer.writeStartDocument("ISO-8859-1", "1.0");
writer.writeStartElement("greeting");
writer.writeAttribute("id", "g1");
writer.writeCharacters("Hello StAX");
writer.writeEndDocument();

44

Lab:Lab:

Exercise 3: CursorExercise 3: Cursor
Exercise 4: XMLStreamWriterExercise 4: XMLStreamWriter

4346_ws_jaxp_stax.zip4346_ws_jaxp_stax.zip

45

StreamFilter APIStreamFilter API

46

StreamFilter

• Stream through the XML and only pay attention to the
ones I care
> Elements
> Namespace

• Ease of development
• Performance

> Lower level filtering
> Stream dances lightly, quickly, efficiently

47

StreamFilter Class

accept(XMLStreamReader reader) {
 // Filtering code
}

48

StreamFilter Example #1
 // Accept only StartElement and EndElement events,

 // Filters out rest of the events.

 public boolean accept(XMLStreamReader reader) {

 if (!reader.isStartElement() && !reader.isEndElement()) {

 return false;

 } else {

 return true;

 }

 }

49

StreamFilter Example #2

public class MyNamespaceFilter implements javax.xml.stream.StreamFilter {

 public boolean accept(XMLStreamReader reader) {

 // Only interested in START_ELEMENT Events

 if (!reader.isStartElement()) { return false; }

 // Only interested in my desired Namespace

 String startElementNamespace = reader.getNamespaceURI();

 if (startElementNamespace == null

 || !startElementNamespace.equals(myDesiredNamespace)) {

 return false;

 }

 // of interest

 return true;

 }

}

50

StreamFilter Example #2 Results
<BookCatalogue

xmlns=”http://ignore”

xmlns:accept=”http://accept”>

<accept:Book ...>

<Book ...>

<Book ...>

...

<Event>

 [java] START_ELEMENT(1)

 [java] Name: {http://accept}Book

 [java] Attribute:
{}:ISBN(CDATA)=81-40-34319-4

 [java] </Event>

{... rest ignored ...}

http://ignore/
http://accept/

51

Lab:Lab:

Exercise 5: FilterExercise 5: Filter
4346_ws_jaxp_stax.zip4346_ws_jaxp_stax.zip

52

Choosing between Choosing between
Cursor and Iterator Cursor and Iterator
APIsAPIs

53

Why 2 APIs?
• Given these wide-ranging development categories

(see next slide), the StAX authors felt it was more
useful to define two small, efficient APIs rather than
overloading one larger and necessarily more
complex API.

54

General Recommendations

• If you are programming for a particularly memory-
constrained environment, like Java ME, you can
make smaller, more efficient code with the cursor
API.

• If performance is your highest priority--for example,
when creating low-level libraries or infrastructure--the
cursor API is more efficient.

55

General Recommendations

• In general, if you do not have a strong preference
one way or the other, using the iterator API is
recommended because it is more flexible and
extensible, thereby "future-proofing" your
applications.

56

SummarySummary

57

Summary

• What is StAX?
• Why StAX?

• Iterator API
> XMLEventReader, XMLEventWriter

• Cursor API
> XMLStreamReader, XMLStreamWriter

• StreamFilter API
• Choosing between Cursor and Iterator APIs

Learn with Passion!Learn with Passion!
JPassion.comJPassion.com

58

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

